论文标题

洞穴:数字减法血管造影中的脑动脉静脉分割

CAVE: Cerebral Artery-Vein Segmentation in Digital Subtraction Angiography

论文作者

Su, Ruisheng, van der Sluijs, P. Matthijs, Chen, Yuan, Cornelissen, Sandra, Broek, Ruben van den, van Zwam, Wim H., van der Lugt, Aad, Niessen, Wiro, Ruijters, Danny, van Walsum, Theo

论文摘要

脑X射线数字减法血管造影(DSA)是一种广泛使用的神经血管疾病患者的成像技术,可通过高时空分辨率进行血管和流动可视化。 DSA中的自动动脉静脉分割在血管分析中起着基本作用,并具有定量的生物标志物提取,从而促进了广泛的临床应用。广泛采用的U-NET应用于静态DSA框架上,通常会与从减法伪像的解开船只进行斗争。此外,它在无视DSA固有的时间观点时,有效地分离动脉和静脉。为了解决这些局限性,我们建议同时利用DSA中的分段动脉和静脉来利用空间脉管系统和颞脑流动特性。提出的网络(创建的洞穴)使用空间模块编码一个2D+时间DSA系列,使用时间模块聚集了所有特征,并将其解码为2D分割图。在大型多中心临床数据集中,Cave的血管分割骰子为0.84($ \ pm $ 0.04),动脉静脉骰子骰子为0.79($ \ pm $ 0.06)。洞穴超过了传统的基于Frangi的K-均值聚类(P <0.001)和U-NET(P <0.001),这表明了收集时空特征的优势。这项研究代表了使用深度学习对DSA自动动脉静脉分割的首次研究。该代码可在https://github.com/ruishengsu/cave_dsa上公开获取。

Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery-vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 ($\pm$0.04) and an artery-vein segmentation Dice of 0.79 ($\pm$0.06). CAVE surpasses traditional Frangi-based K-means clustering (P<0.001) and U-Net (P<0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery-vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源