论文标题
疾病对自旋量子装置中门耦合强度的分布的影响
Impact of disorder on the distribution of gate coupling strengths in a spin qubit device
论文作者
论文摘要
可扩展的基于自旋的量子处理器需要合适的半导体异质结构和栅极设计,并进行了多种替代方案。实验表征此类设备是一项艰巨的任务,完整的开发周期至少需要几个月。尽管数值模拟更及时,但由于不可避免的障碍和设备对设备的变化,它们的预测能力受到限制。我们开发一个自旋量设备模拟,以确定在存在无序的情况下静电门电位和有效装置哈密顿量之间耦合强度的分布。通过将我们的仿真结果与实验数据进行比较,我们证明了栅极电压与点化学电位的耦合和互点隧道耦合匹配与疾病诱导的方差相匹配。为了证明我们方法的灵活性,我们还分析了灵感来自FinFET设备的替代非平面几何形状。
A scalable spin-based quantum processor requires a suitable semiconductor heterostructure and a gate design, with multiple alternatives being investigated. Characterizing such devices experimentally is a demanding task, with the full development cycle taking at least months. While numerical simulations are more time-efficient, their predictive power is limited due to unavoidable disorder and device-to-device variation. We develop a spin-qubit device simulation for determining the distribution of the coupling strengths between the electrostatic gate potentials and the effective device Hamiltonian in presence of disorder. By comparing our simulation results with the experimental data, we demonstrate that the coupling of the gate voltages to the dot chemical potential and the interdot tunnel coupling match up to disorder-induced variance. To demonstrate the flexibility of our approach, we also analyze an alternative non-planar geometry inspired by FinFET devices.