论文标题

评估和比较八种流行的LiDAR和Visual Slam算法

Evaluation and comparison of eight popular Lidar and Visual SLAM algorithms

论文作者

Garigipati, Bharath, Strokina, Nataliya, Ghabcheloo, Reza

论文摘要

在本文中,我们评估了八种流行和开源的3D激光雷达和视觉猛击(同时定位和映射)算法,即壤土,乐高壤土,lio sam,hdl graph,orb slam3,basalt vio和svo2。我们已经设计了室内和室外的实验,以研究以下项目的影响:i)传感器安装位置的影响,ii)地形类型和振动的影响,iii)运动的影响(线性和角速速度的变化)。我们根据相对和绝对姿势误差比较它们的性能。我们还提供了他们所需的计算资源的比较。我们通过我们的多摄像头和多大摄像机室内和室外数据集进行彻底分析和讨论结果,并确定环境案例的最佳性能系统。我们希望我们的发现有助于人们根据目标环境选择一个适合其需求的传感器和相应的SLAM算法组合。

In this paper, we evaluate eight popular and open-source 3D Lidar and visual SLAM (Simultaneous Localization and Mapping) algorithms, namely LOAM, Lego LOAM, LIO SAM, HDL Graph, ORB SLAM3, Basalt VIO, and SVO2. We have devised experiments both indoor and outdoor to investigate the effect of the following items: i) effect of mounting positions of the sensors, ii) effect of terrain type and vibration, iii) effect of motion (variation in linear and angular speed). We compare their performance in terms of relative and absolute pose error. We also provide comparison on their required computational resources. We thoroughly analyse and discuss the results and identify the best performing system for the environment cases with our multi-camera and multi-Lidar indoor and outdoor datasets. We hope our findings help one to choose a sensor and the corresponding SLAM algorithm combination suiting their needs, based on their target environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源