论文标题
相同分形维度等静态弹簧网络的独特粘弹性缩放
Distinct viscoelastic scaling for isostatic spring networks of the same fractal dimension
论文作者
论文摘要
分形结构从单体的化学交叉\链接到水凝胶中自发地出现,并且与凝胶过渡时的Power Law Visco \ - 弹性直接相关,正如最近证明的基于Sierpinski Triangle的等值静力(margin-rigid)弹簧网络。在这里,我们概括了Sierpinski三角生成规则,以产生4个分形,所有分形成$ d _ {\ rm f} = \ log 3/\ log 2 $,sierpinski Triangle是一种情况。我们表明,从这些分形得出的春季网络都是等静力的,但展示了其功率法粘弹性的两个不同指数之一。我们得出的结论是,即使对于具有固定连接性的网络,Power-Law粘弹性通常也不能单独是分形维度的函数。
Fractal structure emerges spontaneously from the chemical cross\-linking of monomers into hydrogels, and has been directly linked to power law visco\-elasticity at the gel transition, as recently demonstrated for isostatic (marginally--rigid) spring networks based on the Sierpinski triangle. Here we generalize the Sierpinski triangle generation rules to produce 4 fractals, all with the same dimension $d_{\rm f}=\log 3/\log 2$, with the Sierpinski triangle being one case. We show that spring networks derived from these fractals are all isostatic, but exhibit one of two distinct exponents for their power--law viscoelasticity. We conclude that, even for networks with fixed connectivity, power--law viscoelasticity cannot generally be a function of the fractal dimension alone.