论文标题
EMC2A-NET:用于SAR目标分类的有效的多发性跨通道注意网络
EMC2A-Net: An Efficient Multibranch Cross-channel Attention Network for SAR Target Classification
论文作者
论文摘要
近年来,卷积神经网络(CNN)在合成孔径雷达(SAR)目标识别方面表现出巨大的潜力。 SAR图像具有强烈的粒度感,并且具有不同的纹理特征,例如斑点噪声,目标主导散射器和目标轮廓,在传统的CNN模型中很少考虑。本文提出了两个残留块,即基于多群结构,具有多尺度接收场(RFS)的EMC2A块,然后设计了有效的同位素体系结构深CNN(DCNN),EMC2A-NET。 EMC2A阻止使用不同的扩张速率利用平行的扩张卷积,这可以有效地捕获多尺度上下文特征而不会显着增加计算负担。为了进一步提高多尺度特征融合的效率,本文提出了多尺度特征跨通道注意模块,即EMC2A模块,采用了局部的多尺度功能交互策略,而无需降低维度。该策略通过有效的一维(1D) - 圆形卷积和Sigmoid函数适应每个通道的权重,以指导全球通道明智的关注。 MSTAR数据集上的比较结果表明,EMC2A-NET的表现优于相同类型的现有模型,并且具有相对轻巧的网络结构。消融实验结果表明,仅使用一些参数和适当的跨通道相互作用,EMC2A模块可显着提高模型的性能。
In recent years, convolutional neural networks (CNNs) have shown great potential in synthetic aperture radar (SAR) target recognition. SAR images have a strong sense of granularity and have different scales of texture features, such as speckle noise, target dominant scatterers and target contours, which are rarely considered in the traditional CNN model. This paper proposed two residual blocks, namely EMC2A blocks with multiscale receptive fields(RFs), based on a multibranch structure and then designed an efficient isotopic architecture deep CNN (DCNN), EMC2A-Net. EMC2A blocks utilize parallel dilated convolution with different dilation rates, which can effectively capture multiscale context features without significantly increasing the computational burden. To further improve the efficiency of multiscale feature fusion, this paper proposed a multiscale feature cross-channel attention module, namely the EMC2A module, adopting a local multiscale feature interaction strategy without dimensionality reduction. This strategy adaptively adjusts the weights of each channel through efficient one-dimensional (1D)-circular convolution and sigmoid function to guide attention at the global channel wise level. The comparative results on the MSTAR dataset show that EMC2A-Net outperforms the existing available models of the same type and has relatively lightweight network structure. The ablation experiment results show that the EMC2A module significantly improves the performance of the model by using only a few parameters and appropriate cross-channel interactions.