论文标题

随机原始偶二三操作员分裂算法,扩展到逐个定期的正规化算法

Stochastic Primal-Dual Three Operator Splitting Algorithm with Extension to Equivariant Regularization-by-Denoising

论文作者

Tang, Junqi, Ehrhardt, Matthias, Schönlieb, Carola-Bibiane

论文摘要

在这项工作中,我们提出了一种随机原始双偶三重操作员分裂算法(TOS-SPDHG),用于解决一类凸的三复合优化问题。我们提出的方案是SPDHG算法的直接三操作员分裂扩展[Chambolle等。 2018]。我们提供了理论上的收敛分析,该分析显示了Ergodic $ O(1/K)$收敛率,并证明了我们方法在成像反问题中的有效性。此外,我们进一步提出了TOS-SPDHG-RED和TOS-SPDHG-ERER,这些tos-spdhg-ered利用逐个定期化(红色)框架来利用预处理的深层denoinging网络作为先验。

In this work we propose a stochastic primal-dual three-operator splitting algorithm (TOS-SPDHG) for solving a class of convex three-composite optimization problems. Our proposed scheme is a direct three-operator splitting extension of the SPDHG algorithm [Chambolle et al. 2018]. We provide theoretical convergence analysis showing ergodic $O(1/K)$ convergence rate, and demonstrate the effectiveness of our approach in imaging inverse problems. Moreover, we further propose TOS-SPDHG-RED and TOS-SPDHG-eRED which utilizes the regularization-by-denoising (RED) framework to leverage pretrained deep denoising networks as priors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源