论文标题

十二面体L空间和双曲线4个manifolds

Dodecahedral L-spaces and hyperbolic 4-manifolds

论文作者

Battista, Ludovico, Ferrari, Leonardo, Santoro, Diego

论文摘要

我们证明,在29个理性同源性中,有6个由四个或更少的右角双曲线十二烷基的三个球体是L空间。所使用的算法基于Dunfield在Arxiv:1904.04628中提供的L空间普查,并取决于Rasmussen-Rasmussen Arxiv的结果:1508.05900。我们将这些歧管的存在与Martelli Arxiv:1510.06325一起使用,以构建含有分离L空间的双曲线4个杂音的明确实例,因此具有消失的Seiberg-Witten不变性。这回答了Agol和Lin在Arxiv中问的一个问题:1812.06536。

We prove that exactly 6 out of the 29 rational homology 3-spheres tessellated by four or less right-angled hyperbolic dodecahedra are L-spaces. The algorithm used is based on the L-space census provided by Dunfield in arXiv:1904.04628, and relies on a result by Rasmussen-Rasmussen arXiv:1508.05900. We use the existence of these manifolds together with a result of Martelli arXiv:1510.06325 to construct explicit examples of hyperbolic 4-manifolds containing separating L-spaces, and therefore having vanishing Seiberg-Witten invariants. This answers a question asked by Agol and Lin in arXiv:1812.06536.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源