论文标题

派生的$ f $ -zips

Derived $F$-zips

论文作者

Yaylali, Can

论文摘要

我们将$ f $ zips的派生版本定义为派生的$ f $ -zip,以实现积极特征的任何适当,平滑的形态。我们分析了衍生的$ f $ zips和某些替代的堆栈。我们与经典理论建立了联系,并研究试图概括该理论以衍生$ g $ zips和衍生的$ f $ zips时出现的问题。作为一个应用程序,我们查看Enriques-Surfaces,并通过关联的派生$ F $ -ZIPS分析Enriques-Surfaces的模量堆栈的几何形状。由于特征性的$ 2 $具有不良的hodge-de hodge-de rham光谱序列,因此提供了一种新方法,以前无法通过$ f $ zips的经典理论获得。

We define derived versions of $F$-zips and associate a derived $F$-zip to any proper, smooth morphism of schemes in positive characteristic. We analyze the stack of derived $F$-zips and certain substacks. We make a connection to the classical theory and look at problems that arise when trying to generalize the theory to derived $G$-zips and derived $F$-zips associated to lci morphisms. As an application, we look at Enriques-surfaces and analyze the geometry of the moduli stack of Enriques-surfaces via the associated derived $F$-zips. As there are Enriques-surfaces in characteristic $2$ with non-degenerate Hodge-de Rham spectral sequence, this gives a new approach, which could previously not be obtained by the classical theory of $F$-zips.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源