论文标题
部分可观测时空混沌系统的无模型预测
Approaching Petavolts per meter plasmonics using structured semiconductors
论文作者
论文摘要
一类新的强烈激发的等离激元模式,可以开放对每米电磁场前所未有的Petavolts开放,有望广泛,变革性影响。这些模式由超高,离域的自由电子费米气体的大幅度振荡构成,这是导电介质固有的。这里引入了具有适当浓度的N型掺杂剂的结构化半导体,以调整费米气体的性能,以匹配静电,表面“ crunch-In”等离子体的激发,并使用易于使用的十个微光整体尺寸和数百个picocoulomb电荷的电子束在管中发射。通过在费米电子气体的相对论振荡中匹配的结果并发现独特现象,这使得强烈的激发。相对诱导的弹道电子传输是由于平均自由路径的相对论多率增加而产生的。收到的弹道运输还导致超出欧姆定律以外的非常规的热量沉积。这解释了在实验中没有观察到的损伤或固相形成,而导电样品与电子束的相互作用短于$ \ rm 10^{ - 13}秒$。此外,相对论动量会导致电子气体的大量隧穿,从而使其穿越表面并在管中倾斜。相对论效应以及这些模式的宽大,费米气体密度的局部变化,需要采用动力学方法与粒子中的粒子模拟结合。在此处使用$ \ rm 10^{18} cm^{ - 3} $自由电子密度的半导体中激发的每米磁场上的数十千伏型电场对加速度和聚焦的实验验证。
A new class of strongly excited plasmonic modes that open access to unprecedented Petavolts per meter electromagnetic fields promise wide-ranging, transformative impact. These modes are constituted by large amplitude oscillations of the ultradense, delocalized free electron Fermi gas which is inherent in conductive media. Here structured semiconductors with appropriate concentration of n-type dopant are introduced to tune the properties of the Fermi gas for matched excitation of an electrostatic, surface "crunch-in" plasmon using readily available electron beams of ten micron overall dimensions and hundreds of picoCoulomb charge launched inside a tube. Strong excitation made possible by matching results in relativistic oscillations of the Fermi electron gas and uncovers unique phenomena. Relativistically induced ballistic electron transport comes about due to relativistic multifold increase in the mean free path. Acquired ballistic transport also leads to unconventional heat deposition beyond the Ohm's law. This explains the absence of observed damage or solid-plasma formation in experiments on interaction of conductive samples with electron bunches shorter than $\rm 10^{-13} seconds$. Furthermore, relativistic momentum leads to copious tunneling of electron gas allowing it to traverse the surface and crunch inside the tube. Relativistic effects along with large, localized variation of Fermi gas density underlying these modes necessitate the kinetic approach coupled with particle-in-cell simulations. Experimental verification of acceleration and focusing of electron beams modeled here using tens of Gigavolts per meter fields excited in semiconductors with $\rm 10^{18}cm^{-3}$ free electron density will pave the way for Petavolts per meter plasmonics.