论文标题
沿海湿地的水文功能下降,以响应盐水入侵
Declining hydrologic function of coastal wetlands in response to saltwater intrusion
论文作者
论文摘要
盐度和淹没将沿海湿地塑造成全球生产力最高,但脆弱的ecotones之一。海平面上升会改变盐度和浸没制度,威胁到这些栖息地的未来存在。尽管如此,影响的幅度仍然难以捉摸。当前的范式是,沿海社区将通过土壤积聚来跟上海平面上升的步伐,土壤积聚,这一过程在很大程度上由植物与地貌学的相互作用所维持。然而,这一论点取决于浸没是生物地球化过程的主要驱动力的假设,并且不包括盐度对植物水文功能的影响。在这里,我们表明盐度对潮汐植被如何控制地下水位的深度有重大影响 - 这是调节植物建立,生存率和生产率的关键生态水文过程。我们的发现取决于佛罗里达大沼泽地的长期观察和建模结果。他们表明,改变的盐度制度可以抑制蒸腾作用,以这种方式破坏潮汐生态系统控制地下水位运动的能力,并对比其他形式的植物压力(如供水)。在大沼泽地的潮汐边缘的红树林中,这种效果显而易见,在那里盐水已经在植物液压和地下水动力学之间产生了广泛的脱钩。这种机制导致浅水表和较差的土壤体育条件,对沿海湿地的水文功能和弹性产生了相当大的影响。
Salinity and submergence have shaped coastal wetlands into one of the most productive and yet fragile ecotones worldwide. Sea-level rise alters both salinity and submersion regimes, threatening the future existence of these habitats. Still, the magnitude of the impacts is elusive. A current paradigm is that coastal communities will keep pace with sea-level rise through soil accretion, a process largely sustained by the interaction of plants and geomorphology. This thesis, however, rests on the assumption that submersion is the main driver of bio-geomorphic processes and does not include the effects of salinity on plant hydrologic function. Here, we show that salinity has a major influence on how tidal vegetation controls the depth of the water table - a key ecohydrological process regulating plant establishment, survival rate, and productivity. Our findings rely on long-term observations from the Florida Everglades and modeling results. They indicate that altered salinity regimes can suppress transpiration, undermining in this way the ability of tidal ecosystems to control water table movements and contrast other forms of plant stress like waterlogging. This effect is apparent in the mangroves of the Everglades' tidal fringe, where salinization has already yielded extensive decoupling between plant hydraulics and groundwater dynamics. This mechanism leads to shallow water tables and poor soil-aeration conditions, with sizable impacts on coastal wetlands' hydrologic function and elasticity.