论文标题
部分可观测时空混沌系统的无模型预测
Partial Connection Based on Channel Attention for Differentiable Neural Architecture Search
论文作者
论文摘要
作为梯度引导的搜索方法,可区分的神经体系结构搜索(飞镖)大大降低了计算成本,并加快了搜索的速度。在飞镖中,将体系结构参数引入候选操作,但是某些配备权重的操作的参数可能在初始阶段训练不好,这会导致候选操作之间的不公平竞争。无重量的操作大量出现,导致性能崩溃现象。此外,在训练超网期间将占用大量内存,这会导致内存利用率较低。在本文中,提出了基于通道注意的部分通道连接,以进行可区分的神经体系结构搜索(ADARTS)。一些具有较高权重的通道是通过注意机制选择的,并发送到操作空间,而其他通道直接与已处理的通道接触。选择一些具有较高注意力权重的通道可以更好地将重要的功能信息传输到搜索空间中,并大大提高搜索效率和内存利用率。也可以避免由随机选择引起的网络结构的不稳定性。实验结果表明,Adarts在CIFAR-10和CIFAR-100上分别达到了2.46%和17.06%的分类错误率。 Adarts可以有效地解决一个问题,即搜索过程中出现过多的跳过连接并获得具有更好性能的网络结构。
Differentiable neural architecture search (DARTS), as a gradient-guided search method, greatly reduces the cost of computation and speeds up the search. In DARTS, the architecture parameters are introduced to the candidate operations, but the parameters of some weight-equipped operations may not be trained well in the initial stage, which causes unfair competition between candidate operations. The weight-free operations appear in large numbers which results in the phenomenon of performance crash. Besides, a lot of memory will be occupied during training supernet which causes the memory utilization to be low. In this paper, a partial channel connection based on channel attention for differentiable neural architecture search (ADARTS) is proposed. Some channels with higher weights are selected through the attention mechanism and sent into the operation space while the other channels are directly contacted with the processed channels. Selecting a few channels with higher attention weights can better transmit important feature information into the search space and greatly improve search efficiency and memory utilization. The instability of network structure caused by random selection can also be avoided. The experimental results show that ADARTS achieved 2.46% and 17.06% classification error rates on CIFAR-10 and CIFAR-100, respectively. ADARTS can effectively solve the problem that too many skip connections appear in the search process and obtain network structures with better performance.