论文标题
HBMAX:优化对并行影响多层体系结构最大化的内存效率
HBMax: Optimizing Memory Efficiency for Parallel Influence Maximization on Multicore Architectures
论文作者
论文摘要
影响最大化的目的是在网络中选择k个最有影响的顶点或种子,在该网络中,影响由给定扩散过程定义。尽管计算最佳种子集是NP硬的,但仍存在有效的近似算法。但是,即使是最新的并行实现也受到造成大量内存足迹的采样步骤的限制。反过来,这限制了问题大小到达和近似质量。在这项工作中,我们研究了采样过程的记忆足迹,收集了IMM中反向可及信息(通过Martingales的最大化)算法在大型现实世界社交网络上。我们提出了一种基于Ripples的内存高效优化方法(称为HBMAX),这是一种最先进的多线程并行影响最大化解决方案。我们的方法HBMAX使用算法收集的反向到达(RR)集的一部分来学习图的特征。然后,它使用Huffman编码或位图编码来压缩中间反向的可及性信息,并在部分解码的数据上进行查询,或直接在压缩数据上进行查询,以保留通过压缩获得的内存节省。考虑到NUMA体系结构,我们将解决方案扩展到64个CPU内核上,并在平均6.3%的加速度(编码开销被降低记忆力降低)中减少多达82.1%(编码开销)而不会损失准确性。对于最大的测试图Twitter7(边缘为14亿),HBMAX可实现5.9倍的压缩比和2.2倍的加速。
Influence maximization aims to select k most-influential vertices or seeds in a network, where influence is defined by a given diffusion process. Although computing optimal seed set is NP-Hard, efficient approximation algorithms exist. However, even state-of-the-art parallel implementations are limited by a sampling step that incurs large memory footprints. This in turn limits the problem size reach and approximation quality. In this work, we study the memory footprint of the sampling process collecting reverse reachability information in the IMM (Influence Maximization via Martingales) algorithm over large real-world social networks. We present a memory-efficient optimization approach (called HBMax) based on Ripples, a state-of-the-art multi-threaded parallel influence maximization solution. Our approach, HBMax, uses a portion of the reverse reachable (RR) sets collected by the algorithm to learn the characteristics of the graph. Then, it compresses the intermediate reverse reachability information with Huffman coding or bitmap coding, and queries on the partially decoded data, or directly on the compressed data to preserve the memory savings obtained through compression. Considering a NUMA architecture, we scale up our solution on 64 CPU cores and reduce the memory footprint by up to 82.1% with average 6.3% speedup (encoding overhead is offset by performance gain from memory reduction) without loss of accuracy. For the largest tested graph Twitter7 (with 1.4 billion edges), HBMax achieves 5.9X compression ratio and 2.2X speedup.