论文标题
部分可观测时空混沌系统的无模型预测
Photon-Limited Blind Deconvolution using Unsupervised Iterative Kernel Estimation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Blind deconvolution is a challenging problem, but in low-light it is even more difficult. Existing algorithms, both classical and deep-learning based, are not designed for this condition. When the photon shot noise is strong, conventional deconvolution methods fail because (1) the image does not have enough signal-to-noise ratio to perform the blur estimation; (2) While deep neural networks are powerful, many of them do not consider the forward process. When the noise is strong, these networks fail to simultaneously deblur and denoise; (3) While iterative schemes are known to be robust in the classical frameworks, they are seldom considered in deep neural networks because it requires a differentiable non-blind solver. This paper addresses the above challenges by presenting an \emph{unsupervised} blind deconvolution method. At the core of this method is a reformulation of the general blind deconvolution framework from the conventional image-kernel alternating minimization to a purely kernel-based minimization. This kernel-based minimization leads to a new iterative scheme that backpropagates an unsupervised loss through a pre-trained non-blind solver to update the blur kernel. Experimental results show that the proposed framework achieves superior results than state-of-the-art blind deconvolution algorithms in low-light conditions.