论文标题
偏斜代数的表示形式
Moduli of Representations of Skewed-Gentle Algebras
论文作者
论文摘要
我们证明,偏斜式代数的模量空间的不可还原成分,更一般而言的clannish代数对投射空间的产物是同构的。这是通过显示出不可还原的宗派代数形式的不可约组成部分来实现的,可以看作是偏斜式代数的不可约组件,我们表明的始终是正常的。主要定理概括了由Carroll-Chindris-Kinser-Weyman证明的特殊双重代数表示的模量的类似结果。
We prove irreducible components of moduli spaces of semistable representations of skewed-gentle algebras, and more generally, clannish algebras, are isomorphic to products of projective spaces. This is achieved by showing irreducible components of varieties of representations of clannish algebras can be viewed as irreducible components of skewed-gentle algebras, which we show are always normal. The main theorem generalizes an analogous result for moduli of representations of special biserial algebras proven by Carroll-Chindris-Kinser-Weyman.