论文标题

在谎言代数模块上,该模块是半密象组方案的模块

On Lie algebra modules which are modules over semisimple group schemes

论文作者

Loverro, Micah, Vasiu, Adrian

论文摘要

令$ p $为素数。给定一个普通整体域$ r $上的分裂的半胶合组方案$ g $,这是一种忠实的$ \ m mathbb z _ {(p)} $ - 代数,我们对所有有限的尺寸表示$ g_k $ g_k $ g_k $ g_k $ g_k $ g $ g $ a $ k:= $ k:= freac} $ a $ $ g $ - 模块也是$ v $相对于$ r $($ \ text {lie}(g)$ - 模块的零件的集合。我们应用此分类以获取比$ \ text {spec} k $之间的同态同构扩展的一般标准,以在$ \ text {spec} r $上的还原组方案之间的同构。我们还表明,对于简单连接的半imple组方案,在减少的$ \ mathbb Q $-代数上,其表示形式的类别等同于其Lie代数的表示类别。

Let $p$ be a prime. Given a split semisimple group scheme $G$ over a normal integral domain $R$ which is a faithfully flat $\mathbb Z_{(p)}$-algebra, we classify all finite dimensional representations $V$ of the fiber $G_K$ of $G$ over $K:=\text{Frac}(R)$ with the property that the set of lattices of $V$ with respect to $R$ which are $G$-modules is as well the set of lattices of $V$ with respect to $R$ which are $\text{Lie}(G)$-modules. We apply this classification to get a general criterion of extensions of homomorphisms between reductive group schemes over $\text{Spec} K$ to homomorphisms between reductive group schemes over $\text{Spec} R$. We also show that for a simply connected semisimple group scheme over a reduced $\mathbb Q$--algebra, the category of its representations is equivalent to the category of representations of its Lie algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源