论文标题
卷积神经网络具有混合损失函数,用于FDG PET图像中淋巴瘤病变的全自动分割
Convolutional neural network with a hybrid loss function for fully automated segmentation of lymphoma lesions in FDG PET images
论文作者
论文摘要
淋巴瘤病变的分割由于全身PET扫描中的各种大小和位置而具有挑战性。这项工作使用具有异质特征的弥漫性大B细胞淋巴瘤(DLBCL)的多中心数据集提出了一种完全自动化的分割技术。我们利用了来自两个不同成像中心的[18F] FDG-PET扫描(n = 194)的数据集,包括具有原发性纵隔大B细胞淋巴瘤(PMBCL)的病例(n = 104)。将自动化的大脑和膀胱清除方法用作预处理步骤,以应对这些器官中正常多代谢摄取引起的假阳性。我们的分割模型是基于3D U-NET体系结构的卷积神经网络(CNN),其中包括挤压和激发(SE)模块。利用了杂种分布,区域和基于边界的损失(统一局灶性和芒福德 - 莎阿(MS)),与其他组合相比,表现出最佳性能(p <0.05)。在火车/验证数据上应用了不同中心,DLBCL和PMBCL病例之间的交叉验证以及三个随机拆分。这六个模型的合奏达到了骰子相似系数(DSC)为0.77 +-0.08,而Hausdorff距离(HD)为16.5 +-12.5。与3D U-NET(无SE SE模块)相比,我们具有与混合损失分割的SE模块的3D U-NET模型相比,使用相同的损耗函数(DSC = 0.64 +-0.21和HD = 26.3 + - 18.7)。我们的模型可以在多中心环境中促进完全自动化的定量管道,这为总代谢肿瘤体积(TMTV)的常规报告打开了可能性,并且显示出对淋巴瘤管理有用的其他指标。
Segmentation of lymphoma lesions is challenging due to their varied sizes and locations in whole-body PET scans. This work presents a fully-automated segmentation technique using a multi-center dataset of diffuse large B-cell lymphoma (DLBCL) with heterogeneous characteristics. We utilized a dataset of [18F]FDG-PET scans (n=194) from two different imaging centers, including cases with primary mediastinal large B-cell lymphoma (PMBCL) (n=104). Automated brain and bladder removal approaches were utilized as preprocessing steps to tackle false positives caused by normal hypermetabolic uptake in these organs. Our segmentation model is a convolutional neural network (CNN) based on a 3D U-Net architecture that includes squeeze and excitation (SE) modules. Hybrid distribution, region, and boundary-based losses (Unified Focal and Mumford-Shah (MS)) were utilized that showed the best performance compared to other combinations (p<0.05). Cross-validation between different centers, DLBCL and PMBCL cases, and three random splits were applied on train/validation data. The ensemble of these six models achieved a Dice similarity coefficient (DSC) of 0.77 +- 0.08 and Hausdorff distance (HD) of 16.5 +-12.5. Our 3D U-net model with SE modules for segmentation with hybrid loss performed significantly better (p<0.05) as compared to the 3D U-Net (without SE modules) using the same loss function (Unified Focal and MS loss) (DSC= 0.64 +-0.21 and HD= 26.3 +- 18.7). Our model can facilitate a fully automated quantification pipeline in a multi-center context that opens the possibility for routine reporting of total metabolic tumor volume (TMTV) and other metrics shown useful for the management of lymphoma.