论文标题

通过学习面对具有里程碑意义的轨迹产生多个4D表达过渡

Generating Multiple 4D Expression Transitions by Learning Face Landmark Trajectories

论文作者

Otberdout, Naima, Ferrari, Claudio, Daoudi, Mohamed, Berretti, Stefano, Del Bimbo, Alberto

论文摘要

在这项工作中,我们解决了4D面部表情产生的问题。通常,通过对中性3D面动画来达到表达峰,然后回到中立状态来解决这一点。但是,在现实世界中,人们表现出更加复杂的表达方式,并从一个表达式转换为另一种表达。因此,我们提出了一个新模型,该模型在不同表达式之间产生过渡,并综合了长长的4D表达式。这涉及三个子问题:(i)建模表达式的时间动力学,(ii)它们之间的学习过渡,以及(iii)变形通用网格。我们建议使用一组3D地标的运动编码表达式的时间演变,我们学会通过训练一个具有歧管值的gan(Motion3dgan)来生成。为了允许生成组成的表达式,该模型接受两个编码起始和结尾表达式的标签。网格的最终顺序是由稀疏的2块网格解码器(S2D-DEC)生成的,该解码器将地标位移映射到已知网格拓扑的密集,每位vertex的位移。通过明确处理运动轨迹,该模型完全独立于身份。五个公共数据集的广泛实验表明,我们提出的方法在以前的解决方案方面带来了重大改进,同时保留了良好的概括以看不见数据。

In this work, we address the problem of 4D facial expressions generation. This is usually addressed by animating a neutral 3D face to reach an expression peak, and then get back to the neutral state. In the real world though, people show more complex expressions, and switch from one expression to another. We thus propose a new model that generates transitions between different expressions, and synthesizes long and composed 4D expressions. This involves three sub-problems: (i) modeling the temporal dynamics of expressions, (ii) learning transitions between them, and (iii) deforming a generic mesh. We propose to encode the temporal evolution of expressions using the motion of a set of 3D landmarks, that we learn to generate by training a manifold-valued GAN (Motion3DGAN). To allow the generation of composed expressions, this model accepts two labels encoding the starting and the ending expressions. The final sequence of meshes is generated by a Sparse2Dense mesh Decoder (S2D-Dec) that maps the landmark displacements to a dense, per-vertex displacement of a known mesh topology. By explicitly working with motion trajectories, the model is totally independent from the identity. Extensive experiments on five public datasets show that our proposed approach brings significant improvements with respect to previous solutions, while retaining good generalization to unseen data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源