论文标题
碰撞检测和腿部操纵器的识别
Collision detection and identification for a legged manipulator
论文作者
论文摘要
为了在现实世界中安全部署腿部机器人,有必要为他们提供可靠地检测出意外接触并准确估算相应接触力的能力。在本文中,我们提出了四足动物的碰撞检测和识别管道。我们首先引入了一种基于带通滤波的碰撞时间跨度的方法,并证明此信息是获得准确的碰撞力估计值的关键。然后,我们通过补偿模型不准确性,未建模的载荷以及作用在机器人上的任何其他潜在的准静态干扰来源来提高所确定的力量幅度的准确性。在各种情况下,我们通过广泛的硬件实验来验证我们的框架,包括小跑和机器人上的其他未建模负载。
To safely deploy legged robots in the real world it is necessary to provide them with the ability to reliably detect unexpected contacts and accurately estimate the corresponding contact force. In this paper, we propose a collision detection and identification pipeline for a quadrupedal manipulator. We first introduce an approach to estimate the collision time span based on band-pass filtering and show that this information is key for obtaining accurate collision force estimates. We then improve the accuracy of the identified force magnitude by compensating for model inaccuracies, unmodeled loads, and any other potential source of quasi-static disturbances acting on the robot. We validate our framework with extensive hardware experiments in various scenarios, including trotting and additional unmodeled load on the robot.