论文标题

亚型形式:一种癌症亚型发现的深度学习方法

Subtype-Former: a deep learning approach for cancer subtype discovery with multi-omics data

论文作者

Yang, Hai, Sheng, Yuhang, Jiang, Yi, Fang, Xiaoyang, Li, Dongdong, Zhang, Jing, Wang, Zhe

论文摘要

动机:癌症是异质的,影响了个性化治疗的精确方法。准确的亚型可以导致癌症患者的生存率更好。高通量技术为癌症亚型提供了多种OMIC数据。但是,由于OMICS数据的大量和高维度,精确的癌症亚型仍然具有挑战性。结果:这项研究提出了基于MLP和变压器块的深度学习方法拟议的亚型形式,以提取多摩学数据的低维表示。 K-均值和共识聚类也用于获得准确的亚型结果。我们将亚型形成剂与TCGA 10癌类型的其他最先进的亚型方法进行了比较。我们发现,基于生存分析,亚型形式可以在5000多个肿瘤的基准数据集上表现更好。此外,亚型形成剂还在Pan-Cancer亚型方面取得了出色的成果,这可以帮助分析分子水平上各种癌症类型的共同点和差异。最后,我们将亚型格式应用于TCGA 10类型的癌症。我们确定了50种基本生物标志物,可用于研究靶向癌症药物并促进精密医学时代的癌症治疗。

Motivation: Cancer is heterogeneous, affecting the precise approach to personalized treatment. Accurate subtyping can lead to better survival rates for cancer patients. High-throughput technologies provide multiple omics data for cancer subtyping. However, precise cancer subtyping remains challenging due to the large amount and high dimensionality of omics data. Results: This study proposed Subtype-Former, a deep learning method based on MLP and Transformer Block, to extract the low-dimensional representation of the multi-omics data. K-means and Consensus Clustering are also used to achieve accurate subtyping results. We compared Subtype-Former with the other state-of-the-art subtyping methods across the TCGA 10 cancer types. We found that Subtype-Former can perform better on the benchmark datasets of more than 5000 tumors based on the survival analysis. In addition, Subtype-Former also achieved outstanding results in pan-cancer subtyping, which can help analyze the commonalities and differences across various cancer types at the molecular level. Finally, we applied Subtype-Former to the TCGA 10 types of cancers. We identified 50 essential biomarkers, which can be used to study targeted cancer drugs and promote the development of cancer treatments in the era of precision medicine.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源