论文标题

seiberg-witten地图的注释,具有平标面曲率的歧管

Notes on of Seiberg-Witten map on manifold with flat scalar curvature

论文作者

Lin, Dexie

论文摘要

在本文中,我们关注塞伯格(Seiberg)方程式的模量空间,并具有周期性末端的非紧凑型歧管。假设周期末端的标量曲率与拓扑条件相同:第一个DE-RHAM的共同体和对周期性末端的自我偶然的共同体限制了。然后,我们将证明扰动的Seiberg-witten方程的模量空间紧凑。

In this paper, we focus on the moduli space of Seiberg-Witten equation on non-compact manifold with periodic end. Suppose that the scalar curvature on the periodic end is identically zero and the topological conditions: the first de-Rham cohomology and the self-dual cohomology restricting on the periodic end vanish. Then, we will show that the moduli space of the perturbed Seiberg-Witten equation is compact.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源