论文标题
大黄蜂重力模型中重力波的极化
Polarizations of Gravitational Waves in the Bumblebee Gravity Model
论文作者
论文摘要
Lorentz违规会改变重力波(GWS)的分散关系,并引起双向反抗和各向异性的传播。我们的研究表明,洛伦兹违规也可以激活GW的多个极化。我们使用仪表不变性来研究Bumblebee重力模型中GWS的极化,并获得以下结果。 (i)对于矢量背景$ b^μ$,仅具有非零的时间组件$ b^t $,有五个独立的传播自由度(DOFS),这是爱因斯坦 - 埃特理论的Simlar。 (ii)背景中的空间成分的存在定义了打破旋转对称性的首选空间方向。我们将$ \ hat {\ bf b} $作为背景空间部分的方向,将$ b_s $作为其长度。如果GWS沿$ \ hat {\ bf b} $传播,则极化内容类似于纯粹的时机。 (iii)如果GWS的传播方向通过角度$β$到$ \ hat {\ bf b} $和$β= \ arccos(b^t/b_s)$分开,则只有两个张量化的偏振。 (iv)如果$β\ neq \ arccos(b^t/b_s)$,则只有两个独立的DOF,并且向量和标量模式随张量模式退化。张量扰动可以同时激活所有六个极化的混合物。最后,我们指出了Bumblebee Gravity模型与线性化机制中最小标准模型扩展框架之间GW的差异。当前的观察结果对背景引起的各向异性施加了严格的约束,而我们的理论研究仍然揭示了一些新颖的现象,并对洛伦兹侵入载体场和重力之间的相互作用有了更多的了解。
Lorentz violation modifies the dispersion relation of gravitational waves (GWs), and induces birefringence and anisotropy in propagation. Our study shows that Lorentz violation can also activate multiple polarizations of GWs. We use the gauge invariants to investigate the polarizations of GWs in the bumblebee gravity model, and obtain the following results. (i) For a vector background $b^μ$ with only a nonzero temporal component $b^t$, there are five independent propagating degrees of freedom (DOFs), which is simlar to the Einstein-aether theory. (ii) The presence of a spatial component in the background defines a preferred spatial direction which breaks rotational symmetry. We denote $\hat{\bf b}$ as the direction of the spatial part of the background and $b_s$ as its length. If GWs propagate along $\hat{\bf b}$, the polarization content is similar to the purely timelike case. (iii) If the propagation direction of GWs is separated by an angle $β$ to $\hat{\bf b}$, and $β=\arccos(b^t/b_s)$, there are only two tensor polarizations. (iv) If $β\neq \arccos(b^t/b_s)$, there are only two independent DOFs, and the vector and scalar modes degenerate with the tensor modes. The tensor perturbations can activate a mixture of all six polarizations simultaneously. Finally, we point out the difference in GWs between the bumblebee gravity model and the minimal Standard-Model Extension framework in the linearized regime. Current observations have placed stringent constraints on the anisotropy induced by the background, while our theoretical study still reveals some novel phenomena and provides more understanding about the interaction between the Lorentz-violating vector field and gravity.