论文标题
偏心重力波形模型的Rosetta石头
A Rosetta Stone for eccentric gravitational waveform models
论文作者
论文摘要
轨道偏心率是动态二进制黑洞形成的关键特征。联合二进制的引力波包含有关其轨道偏心率的信息,如果二元在合并附近保持足够的偏心率,则可以测量。需要专用的波形来测量偏心率。已经提出了几种模型,并在数值相对论中表现出良好的一致性。但是,有多种方法可以定义灵感系统的偏心率,并且在内部使用不同的偏心率定义不同的模型,因此很难直接比较偏心度的测量值。在这项工作中,我们通过开发一个框架来翻译偏心度的不同定义,从系统地比较了两个偏心波形模型,即$ \ texttt {seobnre} $和$ \ texttt {teobresums} $。该映射是通过将两个模型与偏心频率和参考频率之间的相对不匹配来构建的,然后将一个模型的偏心率与与另一个模型相同的参考频率发展。我们表明,对于给定的偏心值,传递给$ \ texttt {seobnre} $,必须输入$ 20 $ - $ 50 \%\%$较小的偏心率较小的偏心值至$ \ texttt {teobresums} $,以便获得具有相同经验偏心的波形。我们通过重复我们的分析来验证该映射,以获取偏心数值相对性模拟,表明$ \ texttt {teobresums} $报告的偏心率相当小的偏心值比$ \ texttt {seobnre} $。
Orbital eccentricity is a key signature of dynamical binary black hole formation. The gravitational waves from a coalescing binary contain information about its orbital eccentricity, which may be measured if the binary retains sufficient eccentricity near merger. Dedicated waveforms are required to measure eccentricity. Several models have been put forward, and show good agreement with numerical relativity at the level of a few percent or better. However, there are multiple ways to define eccentricity for inspiralling systems, and different models internally use different definitions of eccentricity, making it difficult to directly compare eccentricity measurements. In this work, we systematically compare two eccentric waveform models, $\texttt{SEOBNRE}$ and $\texttt{TEOBResumS}$, by developing a framework to translate between different definitions of eccentricity. This mapping is constructed by minimizing the relative mismatch between the two models over eccentricity and reference frequency, before evolving the eccentricity of one model to the same reference frequency as the other model. We show that for a given value of eccentricity passed to $\texttt{SEOBNRE}$, one must input a $20$-$50\%$ smaller value of eccentricity to $\texttt{TEOBResumS}$ in order to obtain a waveform with the same empirical eccentricity. We verify this mapping by repeating our analysis for eccentric numerical relativity simulations, demonstrating that $\texttt{TEOBResumS}$ reports a correspondingly smaller value of eccentricity than $\texttt{SEOBNRE}$.