论文标题
使用多层,非线性光学神经网络传感图像
Image sensing with multilayer, nonlinear optical neural networks
论文作者
论文摘要
光学成像通常用于行业和学术界的科学和技术应用。在图像传感中,通过数字化图像的计算分析来执行一个测量,例如对象的位置。新兴的图像感应范式通过设计光学组件来执行不进行成像而是编码,从而打破了数据收集和分析之间的描述。通过将图像光学地编码到适合有效分析后的压缩,低维的潜在空间中,这些图像传感器可以以更少的像素和更少的光子进行操作,从而可以允许更高的直通量,较低的延迟操作。光学神经网络(ONNS)提供了一个平台,用于处理模拟,光学域中的数据。但是,基于ONN的传感器仅限于线性处理,但是非线性是深度的先决条件,而多层NNS在许多任务上的表现明显优于浅色。在这里,我们使用商业图像增强器作为平行的光电,光学到光学非线性激活函数,实现了用于图像传感的多层预处理器。我们证明,非线性ONN预处理器可以达到高达800:1的压缩比,同时仍可以在几个代表性的计算机视觉任务中高精度,包括机器视觉基准,流程度图像分类以及对象在真实场景中的识别。在所有情况下,我们都会发现ONN的非线性和深度允许其表现优于纯线性ONN编码器。尽管我们的实验专门用于ONN传感器的光线图像,但替代ONN平台应促进一系列ONN传感器。这些ONN传感器可以通过在空间,时间和/或光谱尺寸中预处处理的光学信息来超越常规传感器,并可能具有相干和量子质量,所有这些都在光学域中。
Optical imaging is commonly used for both scientific and technological applications across industry and academia. In image sensing, a measurement, such as of an object's position, is performed by computational analysis of a digitized image. An emerging image-sensing paradigm breaks this delineation between data collection and analysis by designing optical components to perform not imaging, but encoding. By optically encoding images into a compressed, low-dimensional latent space suitable for efficient post-analysis, these image sensors can operate with fewer pixels and fewer photons, allowing higher-throughput, lower-latency operation. Optical neural networks (ONNs) offer a platform for processing data in the analog, optical domain. ONN-based sensors have however been limited to linear processing, but nonlinearity is a prerequisite for depth, and multilayer NNs significantly outperform shallow NNs on many tasks. Here, we realize a multilayer ONN pre-processor for image sensing, using a commercial image intensifier as a parallel optoelectronic, optical-to-optical nonlinear activation function. We demonstrate that the nonlinear ONN pre-processor can achieve compression ratios of up to 800:1 while still enabling high accuracy across several representative computer-vision tasks, including machine-vision benchmarks, flow-cytometry image classification, and identification of objects in real scenes. In all cases we find that the ONN's nonlinearity and depth allowed it to outperform a purely linear ONN encoder. Although our experiments are specialized to ONN sensors for incoherent-light images, alternative ONN platforms should facilitate a range of ONN sensors. These ONN sensors may surpass conventional sensors by pre-processing optical information in spatial, temporal, and/or spectral dimensions, potentially with coherent and quantum qualities, all natively in the optical domain.