论文标题
小行星在外部1:2中的混沌扩散与火星平均运动共振
Chaotic diffusion of asteroids in the exterior 1:2 mean motion resonance with Mars
论文作者
论文摘要
2.1和2.5 Au之间的小行星带具有特殊动力学意义,因为它是软骨陨石和近地小行星的主要来源。该内部皮带由偏心型的世俗共振和1:3与木星的平均运动共振界定。除非小行星旁利亚足够低以允许火星散射,否则逃生需要运输到一个边界共振之一。另外,Yarkovsky部队通常在更改直径$ \ gtrsim $ 30公里的小行星的偏心率和/或倾向方面无效。因此,远离火星的大型小行星只能通过偏心率的巨大变化从内带逃脱。在本文中,我们研究了以系统的方式与火星1:2平均运动共振附近的轨道的混乱扩散。我们表明,尽管谐振和非共振轨道的混乱轨道演变会增加倾斜度和偏心率的分散体,但并没有显着改变其平均值。我们进一步表明,尽管对于共振轨道而言,色散的增长最大,但在高$ e $中,共振行动可缓解火星的小行星散射 - 使皮带中的小行星寿命更长,而不是对非谐振轨道的散射。对于共振和非谐音轨道中各种大小的小行星,仅重力就不能实现偏心率的变化。还分析了共振诱捕在保护小行星免受火星遭遇中的作用。
The inner asteroid belt between 2.1 and 2.5 au is of particular dynamical significance because it is the dominant source of both chondritic meteorites and near-Earth asteroids. This inner belt is bounded by an eccentricity-type secular resonance and by the 1:3 mean motion resonance with Jupiter. Unless asteroid perihelia are low enough to allow scattering by Mars, escape requires transport to one of the bounding resonances. In addition Yarkovsky forces are generally ineffective in changing either the eccentricity and/or inclination for asteroids with diameter $\gtrsim$30 km. Thus, large asteroids with pericentres far from Mars may only escape from the inner belt through large changes in their eccentricities. In this paper we study chaotic diffusion of orbits near the 1:2 mean motion resonance with Mars in a systematic way. We show that, while chaotic orbital evolution in both resonant and non-resonant orbits increase the dispersion of the inclinations and eccentricities, it does not significantly change their mean values. We show further that, while the dispersive growth is greatest for resonant orbits, at high $e$ the resonance acts to mitigate asteroid scattering by Mars - making the asteroid lifetime in the belt longer than it would have been for a non-resonant orbit. For asteroids of all sizes in both resonant and non-resonant orbits, the changes in eccentricity needed to account for the observations cannot be achieved by gravitational forces alone. The role of resonant trapping in protecting asteroids from encounters with Mars is also analysed.