论文标题

基于元学习的基于盲人超分辨率的降解表示

Meta-Learning based Degradation Representation for Blind Super-Resolution

论文作者

Xia, Bin, Tian, Yapeng, Zhang, Yulun, Hang, Yucheng, Yang, Wenming, Liao, Qingmin

论文摘要

基于CNN的大多数超分辨率(SR)方法假设降解是已知的(\ eg,bicubic)。当降解与假设不同时,这些方法将遭受严重的性能下降。因此,一些方法试图通过多种降解的复杂组合来培训SR网络以涵盖实际降解空间。为了适应多个未知降解,引入显式降解估计器实际上可以促进SR性能。但是,以前的显式降解估计方法通常可以通过对地面模糊内核的监督来预测高斯的模糊,并且估计错误可能导致SR失败。因此,有必要设计一种可以提取隐式歧视性降解表示的方法。为此,我们提出了一个基于元学习的区域退化意识到SR网络(MRDA),包括元学习网络(MLN),退化提取网络(DEN)和区域退化意识SR Network(RDAN)。为了应对缺乏地面确实降解,我们使用MLN在几次迭代后快速适应特定的复合物降解并提取隐式降解信息。随后,教师网络MRDA $ _ {T} $旨在进一步利用MLN为SR提取的降级信息。但是,MLN需要在配对的低分辨率(LR)和相应的高分辨率(HR)图像上进行迭代,这在推理阶段不可用。因此,我们采用知识蒸馏(KD)来使学生网络学会直接提取与LR图像的老师相同的隐式退化表示(IDR)。

The most of CNN based super-resolution (SR) methods assume that the degradation is known (\eg, bicubic). These methods will suffer a severe performance drop when the degradation is different from their assumption. Therefore, some approaches attempt to train SR networks with the complex combination of multiple degradations to cover the real degradation space. To adapt to multiple unknown degradations, introducing an explicit degradation estimator can actually facilitate SR performance. However, previous explicit degradation estimation methods usually predict Gaussian blur with the supervision of groundtruth blur kernels, and estimation errors may lead to SR failure. Thus, it is necessary to design a method that can extract implicit discriminative degradation representation. To this end, we propose a Meta-Learning based Region Degradation Aware SR Network (MRDA), including Meta-Learning Network (MLN), Degradation Extraction Network (DEN), and Region Degradation Aware SR Network (RDAN). To handle the lack of groundtruth degradation, we use the MLN to rapidly adapt to the specific complex degradation after several iterations and extract implicit degradation information. Subsequently, a teacher network MRDA$_{T}$ is designed to further utilize the degradation information extracted by MLN for SR. However, MLN requires iterating on paired low-resolution (LR) and corresponding high-resolution (HR) images, which is unavailable in the inference phase. Therefore, we adopt knowledge distillation (KD) to make the student network learn to directly extract the same implicit degradation representation (IDR) as the teacher from LR images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源