论文标题
通过简单的原语抽象草图
Abstracting Sketches through Simple Primitives
论文作者
论文摘要
人类在需要快速传达对象信息的游戏中显示出高级的抽象功能。他们将消息内容分解为多个部分,并以可解释的协议将它们传达。为了为机器提供这种功能,我们提出了基于原始的草图抽象任务,该任务是在预算影响下使用一组固定的绘图原始人来表示草图。为了解决这项任务,我们的原始匹配网络(PMN)以自我监督的方式学习了草图的可解释抽象。具体而言,PMN将草图的每个笔划都映射到给定集中最相似的原始性,预测了仿射转换将所选原始词与目标冲程保持一致。我们学习了端到端的这一笔触到主要的映射,当原始草图精确地用预测的原始词重建时,距离转换损失是最小的。我们的PMN抽象在经验上取得了素描识别和基于素描的图像检索的最高性能,同时也是高度可解释的。这为草图分析打开了新的可能性,例如通过提取定义对象类别的最相关的基础来比较草图。代码可从https://github.com/explainableml/sketch-primitives获得。
Humans show high-level of abstraction capabilities in games that require quickly communicating object information. They decompose the message content into multiple parts and communicate them in an interpretable protocol. Toward equipping machines with such capabilities, we propose the Primitive-based Sketch Abstraction task where the goal is to represent sketches using a fixed set of drawing primitives under the influence of a budget. To solve this task, our Primitive-Matching Network (PMN), learns interpretable abstractions of a sketch in a self supervised manner. Specifically, PMN maps each stroke of a sketch to its most similar primitive in a given set, predicting an affine transformation that aligns the selected primitive to the target stroke. We learn this stroke-to-primitive mapping end-to-end with a distance-transform loss that is minimal when the original sketch is precisely reconstructed with the predicted primitives. Our PMN abstraction empirically achieves the highest performance on sketch recognition and sketch-based image retrieval given a communication budget, while at the same time being highly interpretable. This opens up new possibilities for sketch analysis, such as comparing sketches by extracting the most relevant primitives that define an object category. Code is available at https://github.com/ExplainableML/sketch-primitives.