论文标题
抗蛋白可分学$ \ mathbb {z} _p $ - extensions的启发式方法
Heuristics for anti-cyclotomic $\mathbb{Z}_p$-extensions
论文作者
论文摘要
本文研究了抗循环塔的伊瓦沙瓦不变式。我们通过提出两种计算支持的启发式方法来做到这一点。首先,我们提出了交叉启发式方法:这些模型“多久” $ p $ -Hilbert类的阶级阶级领域与抗周期性塔相交,并在多大程度上相交。其次,我们提出了不变的启发式方法:这些预测iWasawa不变性$λ$和$μ$通常在虚构的二次领域中消失,而$ p $ n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n native Bightiants nishs nish nish nish nish nish nish。
This paper studies Iwasawa invariants in anti-cyclotomic towers. We do this by proposing two heuristics supported by computations. First we propose the Intersection Heuristics: these model `how often' the $p$-Hilbert class field of an imaginary quadratic field intersects the anti-cyclotomic tower and to what extent. Second we propose the Invariants Heuristics: these predict that the Iwasawa invariants $λ$ and $μ$ usually vanish for imaginary quadratic fields where $p$ is non-split.