论文标题
Bessel Eporianiant网络用于反转多模式光纤中传输效应的网络
Bessel Equivariant Networks for Inversion of Transmission Effects in Multi-Mode Optical Fibres
论文作者
论文摘要
我们开发了一种新类型的模型,以解决通过构建$ \ mathrm {so}^{+}(2,1)$ ecurivariant神经网络来解决多模式光纤的传输效果的任务。该模型利用了以纤维斑点模式存在已知的方位角相关性,并且自然地解释了输入和斑点模式之间空间排列的差异。此外,我们使用第二个后处理网络去除圆形伪像,填充空白并锐化图像,这是由于光纤传输的性质所需的。这种两个阶段的方法允许检查由更健壮的物理动机模型产生的预测图像,该模型可能在安全至关重要的应用中或两种模型的输出中很有用,而两种模型都会产生高质量的图像。此外,该模型可以扩展到以前无法实现的使用多模式光纤的成像分辨率,并在$ 256 \ times 256 $像素图像上显示。这是将可训练的参数需求从$ \ Mathcal {o}(n^4)$转化为$ \ Mathcal {o}(M)$的结果,其中$ n $是像素大小,$ m $是光纤模式的数量。最后,在培训数据类别以外的新图像中,该模型将比以前的模型更好。
We develop a new type of model for solving the task of inverting the transmission effects of multi-mode optical fibres through the construction of an $\mathrm{SO}^{+}(2,1)$-equivariant neural network. This model takes advantage of the of the azimuthal correlations known to exist in fibre speckle patterns and naturally accounts for the difference in spatial arrangement between input and speckle patterns. In addition, we use a second post-processing network to remove circular artifacts, fill gaps, and sharpen the images, which is required due to the nature of optical fibre transmission. This two stage approach allows for the inspection of the predicted images produced by the more robust physically motivated equivariant model, which could be useful in a safety-critical application, or by the output of both models, which produces high quality images. Further, this model can scale to previously unachievable resolutions of imaging with multi-mode optical fibres and is demonstrated on $256 \times 256$ pixel images. This is a result of improving the trainable parameter requirement from $\mathcal{O}(N^4)$ to $\mathcal{O}(m)$, where $N$ is pixel size and $m$ is number of fibre modes. Finally, this model generalises to new images, outside of the set of training data classes, better than previous models.