论文标题
对话状态跟踪的可控用户对话法扩展
Controllable User Dialogue Act Augmentation for Dialogue State Tracking
论文作者
论文摘要
先前的工作表明,数据增强对于改善对话状态跟踪非常有用。但是,用户话语有很多类型,而先前的方法仅认为是最简单的方法,这引起了人们对概括能力不佳的关注。为了更好地涵盖多样化的对话行为并控制发电质量,本文提出了可控的用户对话ACT扩展(CUDA-DST),以增强具有多种行为的用户话语。有了增强数据,不同的状态跟踪器会提高改进并显示出更好的鲁棒性,从而在Multiwoz 2.1上实现了最先进的性能
Prior work has demonstrated that data augmentation is useful for improving dialogue state tracking. However, there are many types of user utterances, while the prior method only considered the simplest one for augmentation, raising the concern about poor generalization capability. In order to better cover diverse dialogue acts and control the generation quality, this paper proposes controllable user dialogue act augmentation (CUDA-DST) to augment user utterances with diverse behaviors. With the augmented data, different state trackers gain improvement and show better robustness, achieving the state-of-the-art performance on MultiWOZ 2.1