论文标题

基于参考的图像超分辨率具有可变形的注意变压器

Reference-based Image Super-Resolution with Deformable Attention Transformer

论文作者

Cao, Jiezhang, Liang, Jingyun, Zhang, Kai, Li, Yawei, Zhang, Yulun, Wang, Wenguan, Van Gool, Luc

论文摘要

基于参考的图像超分辨率(REFSR)旨在利用辅助参考(REF)图像为超溶解的低分辨率(LR)图像。最近,RefSR引起了极大的关注,因为它提供了超越单图SR的替代方法。但是,解决REFSR问题有两个关键的挑战:(i)当它们显着不同时,很难匹配LR和Ref图像之间的对应关系; (ii)如何将相关纹理从参考图像转移以补偿LR图像的细节非常具有挑战性。为了解决REFSR的这些问题,本文提出了一个可变形的注意变压器,即DATSR,具有多个尺度,每个尺度由纹理特征编码器(TFE)模块组成,基于参考的可变形注意(RDA)模块和残差特征聚合(RFA)模块。具体而言,TFE首先提取图像转换(例如,亮度)对LR和Ref Images的不敏感特征,然后RDA可以利用多个相关纹理来补偿更多的LR功能信息,而RFA最终汇总了LR功能和相关纹理,以获得更为令人愉悦的结果。广泛的实验表明,我们的DATSR在定量和质量上实现了基准数据集上的最先进性能。

Reference-based image super-resolution (RefSR) aims to exploit auxiliary reference (Ref) images to super-resolve low-resolution (LR) images. Recently, RefSR has been attracting great attention as it provides an alternative way to surpass single image SR. However, addressing the RefSR problem has two critical challenges: (i) It is difficult to match the correspondence between LR and Ref images when they are significantly different; (ii) How to transfer the relevant texture from Ref images to compensate the details for LR images is very challenging. To address these issues of RefSR, this paper proposes a deformable attention Transformer, namely DATSR, with multiple scales, each of which consists of a texture feature encoder (TFE) module, a reference-based deformable attention (RDA) module and a residual feature aggregation (RFA) module. Specifically, TFE first extracts image transformation (e.g., brightness) insensitive features for LR and Ref images, RDA then can exploit multiple relevant textures to compensate more information for LR features, and RFA lastly aggregates LR features and relevant textures to get a more visually pleasant result. Extensive experiments demonstrate that our DATSR achieves state-of-the-art performance on benchmark datasets quantitatively and qualitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源