论文标题
输入输出的隐藏马尔可夫模型的混合物,用于异质疾病进展建模
Mixture of Input-Output Hidden Markov Models for Heterogeneous Disease Progression Modeling
论文作者
论文摘要
疾病进展建模的一个特殊挑战是疾病的异质性及其在患者中的表现。现有方法通常假设存在单一疾病进展特征,这对于诸如帕金森氏病等神经退行性疾病不太可能。在本文中,我们提出了一个分层的时间序列模型,该模型可以发现多种疾病进展动态。提出的模型是投入输出隐藏的马尔可夫模型的扩展,该模型考虑了患者健康状况和处方药的临床评估。我们使用合成生成的数据集和用于帕金森氏病的现实世界纵向数据集说明了我们的模型的好处。
A particular challenge for disease progression modeling is the heterogeneity of a disease and its manifestations in the patients. Existing approaches often assume the presence of a single disease progression characteristics which is unlikely for neurodegenerative disorders such as Parkinson's disease. In this paper, we propose a hierarchical time-series model that can discover multiple disease progression dynamics. The proposed model is an extension of an input-output hidden Markov model that takes into account the clinical assessments of patients' health status and prescribed medications. We illustrate the benefits of our model using a synthetically generated dataset and a real-world longitudinal dataset for Parkinson's disease.