论文标题

使用双重变量在可逆神经网络中增强图像重新缩放

Enhancing Image Rescaling using Dual Latent Variables in Invertible Neural Network

论文作者

Zhang, Min, Pan, Zhihong, Zhou, Xin, Kuo, C. -C. Jay

论文摘要

通过将自然图像的复杂分布近似通过可逆神经网络(INN)近似于潜在空间中的简单拖延分布,已成功地用于生成图像超分辨率(SR)。这些模型可以使用潜在空间中的随机采样点从一个低分辨率(LR)输入中生成多个逼真的SR图像,从而模拟图像升级的不足的性质,其中多个高分辨率(HR)图像对应于同一LR。最近,INN中的可逆过程也通过双向图像重新缩放模型(如IRN和HCFLOW)成功使用,以优化降尺度和逆向上尺度的关节,从而显着改善了高尺度的图像质量。尽管它们也被优化用于图像降尺度,但图像降尺度的不良性质,其中一个HR图像可以根据不同的插值内核和重新采样方法降低到多个LR图像。除了代表图像上图中不确定性的原始一个变量外,还引入了一个新的降尺度潜在变量。这种双重可变变量增强功能适用于不同的图像恢复模型,在广泛的实验中显示,它可以始终如一地提高图像升级精度而不牺牲缩小的LR图像中的图像质量。它还显示在增强基于Inn的其他模型(例如图像隐藏)之类的图像恢复应用程序中有效。

Normalizing flow models have been used successfully for generative image super-resolution (SR) by approximating complex distribution of natural images to simple tractable distribution in latent space through Invertible Neural Networks (INN). These models can generate multiple realistic SR images from one low-resolution (LR) input using randomly sampled points in the latent space, simulating the ill-posed nature of image upscaling where multiple high-resolution (HR) images correspond to the same LR. Lately, the invertible process in INN has also been used successfully by bidirectional image rescaling models like IRN and HCFlow for joint optimization of downscaling and inverse upscaling, resulting in significant improvements in upscaled image quality. While they are optimized for image downscaling too, the ill-posed nature of image downscaling, where one HR image could be downsized to multiple LR images depending on different interpolation kernels and resampling methods, is not considered. A new downscaling latent variable, in addition to the original one representing uncertainties in image upscaling, is introduced to model variations in the image downscaling process. This dual latent variable enhancement is applicable to different image rescaling models and it is shown in extensive experiments that it can improve image upscaling accuracy consistently without sacrificing image quality in downscaled LR images. It is also shown to be effective in enhancing other INN-based models for image restoration applications like image hiding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源