论文标题

$ \ textIt {fastsvd-ml-rom} $:基于机器学习的实时应用程序的简化订单建模框架

$\textit{FastSVD-ML-ROM}$: A Reduced-Order Modeling Framework based on Machine Learning for Real-Time Applications

论文作者

Drakoulas, G. I., Gortsas, T. V., Bourantas, G. C., Burganos, V. N., Polyzos, D.

论文摘要

数字双胞胎已成为优化工程产品和系统性能的关键技术。高保真数值模拟构成了工程设计的骨干,从而准确地了解了复杂系统的性能。但是,大规模的,动态的非线性模型需要大量的计算资源,并且对于实时数字双胞胎应用而言是过于刺激的。为此,采用了减少的订单模型(ROM),以近似高保真解决方案,同时准确捕获物理行为的主要方面。目前的工作提出了一个新的机器学习(ML)平台,用于开发ROM,以处理处理瞬态非线性偏微分方程的大规模数值问题。我们的框架,称为$ \ textit {fastsvd-ml-rom} $,利用$ \ textit {(i)} $一种单数值分解(SVD)更新方法,来计算模拟过程中多效率解决方案的线性子空间$ \ textIt {(iii)} $ feed-forward神经网络将输入参数映射到潜在空间,而$ \ textit {(iv)} $长的短期内存网络可预测和预测参数解决方案的动态。 $ \ textit {fastsvd-ml-rom} $框架的效率用于2D线性对流扩散方程,圆柱体周围的流体问题以及动脉段内的3D血流。重建结果的准确性证明了鲁棒性,并评估了所提出方法的效率。

Digital twins have emerged as a key technology for optimizing the performance of engineering products and systems. High-fidelity numerical simulations constitute the backbone of engineering design, providing an accurate insight into the performance of complex systems. However, large-scale, dynamic, non-linear models require significant computational resources and are prohibitive for real-time digital twin applications. To this end, reduced order models (ROMs) are employed, to approximate the high-fidelity solutions while accurately capturing the dominant aspects of the physical behavior. The present work proposes a new machine learning (ML) platform for the development of ROMs, to handle large-scale numerical problems dealing with transient nonlinear partial differential equations. Our framework, mentioned as $\textit{FastSVD-ML-ROM}$, utilizes $\textit{(i)}$ a singular value decomposition (SVD) update methodology, to compute a linear subspace of the multi-fidelity solutions during the simulation process, $\textit{(ii)}$ convolutional autoencoders for nonlinear dimensionality reduction, $\textit{(iii)}$ feed-forward neural networks to map the input parameters to the latent spaces, and $\textit{(iv)}$ long short-term memory networks to predict and forecast the dynamics of parametric solutions. The efficiency of the $\textit{FastSVD-ML-ROM}$ framework is demonstrated for a 2D linear convection-diffusion equation, the problem of fluid around a cylinder, and the 3D blood flow inside an arterial segment. The accuracy of the reconstructed results demonstrates the robustness and assesses the efficiency of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源