论文标题

PatchRD:通过学习补丁检索和变形,详细的保留形状完成

PatchRD: Detail-Preserving Shape Completion by Learning Patch Retrieval and Deformation

论文作者

Sun, Bo, Kim, Vladimir G., Aigerman, Noam, Huang, Qixing, Chaudhuri, Siddhartha

论文摘要

本文介绍了一种数据驱动的形状完成方法,该方法着重于完成3D形状缺失区域的几何细节。我们观察到,现有的生成方法缺乏培训数据和表示能力,无法通过复杂的几何形状和拓扑合成合理的,细粒度的细节。我们的主要见解是将部分输入的补丁复制和变形,以完成丢失的区域。这使我们能够保留本地几何特征的风格,即使它与培训数据截然不同。我们的全自动方法分为两个阶段。首先,我们学会从输入形状检索候选补丁。其次,我们选择并变形了一些检索到的候选者,以将它们无缝融合成完整的形状。该方法结合了两种最常见的完成方法的优点:基于相似性的单个现实完成,以及通过学习形状空间来完成。我们通过从部分输入中检索贴片来利用重复模式,并通过使用神经网络来指导检索和变形步骤来学习全球结构先验。实验结果表明,我们的方法在多个数据集和形状类别上的表现非常优于基准。代码和数据可在https://github.com/gitbosun/patchrd上找到。

This paper introduces a data-driven shape completion approach that focuses on completing geometric details of missing regions of 3D shapes. We observe that existing generative methods lack the training data and representation capacity to synthesize plausible, fine-grained details with complex geometry and topology. Our key insight is to copy and deform patches from the partial input to complete missing regions. This enables us to preserve the style of local geometric features, even if it drastically differs from the training data. Our fully automatic approach proceeds in two stages. First, we learn to retrieve candidate patches from the input shape. Second, we select and deform some of the retrieved candidates to seamlessly blend them into the complete shape. This method combines the advantages of the two most common completion methods: similarity-based single-instance completion, and completion by learning a shape space. We leverage repeating patterns by retrieving patches from the partial input, and learn global structural priors by using a neural network to guide the retrieval and deformation steps. Experimental results show our approach considerably outperforms baselines across multiple datasets and shape categories. Code and data are available at https://github.com/GitBoSun/PatchRD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源