论文标题
统一的一环张量积分,以实现有限体积效应
A unified formulation of one-loop tensor integrals for finite volume effects
论文作者
论文摘要
提出了一种单循环张量积分的统一公式,以系统地计算有限体积校正。结果表明,如果引入了来自有限体积的离散效应,则可以将单环张量积分分解为一系列张量和张张系数的张量。已得出了用于所有涉及张量系数的数值计算的通用公式。对于消失的外部三摩托马,我们还研究了有限体积中传统的passarino-veltmann减少张量积分的可行性。我们的公式可以轻松地用于实现有限体积校正到一环级别的任何有趣数量的计算的自动化。此外,它提供了有限的体积结果,以独特而简洁的形式,该形式适用于,例如,从现代晶格QCD数据中对物理进行精确确定。
A unified formulation of one-loop tensor integrals is proposed for systematical calculations of finite volume corrections. It is shown that decomposition of the one-loop tensor integrals into a series of tensors accompanied by tensor coefficients is feasible, if a unit space-like four vector $n^μ$, originating from the discretization effects at finite volume, is introduced. A generic formula has been derived for numerical computations of all the involved tensor coefficients. For the vanishing external three-momenta, we also investigate the feasibility of the conventional Passarino-Veltmann reduction of the tensor integrals in a finite volume. Our formulation can be easily used to realize the automation of the calculations of finite volume corrections to any interesting quantities at one-loop level. Besides, it provides finite volume result in a unique and concise form, which is suited for, e.g., carrying out precision determination of physical observable from modern lattice QCD data.