论文标题

Quad-net:CT金属伪像减少的四域网络

Quad-Net: Quad-domain Network for CT Metal Artifact Reduction

论文作者

Li, Zilong, Gao, Qi, Wu, Yaping, Niu, Chuang, Zhang, Junping, Wang, Meiyun, Wang, Ge, Shan, Hongming

论文摘要

在患者中,金属植入物和其他高密度物体在CT图像中引入严重的条纹伪影,损害图像质量和诊断性能。尽管过去几十年来开发了CT金属伪像减少的各种方法,包括最新的双域深网,但在许多情况下,剩余的金属伪像仍然在临床上具有挑战性。在这里,我们将最先进的双域深网方法扩展到四域对应物中,以便对正弦图,图像及其相应的傅立叶结构域中的所有特征进行协同效应,以最佳地消除金属伪像,而不会损害结构上的微妙。我们提出的MAR的四域网络(称为Quad-net)几乎没有额外的计算成本,因为傅立叶变换非常有效,并且在四个接收领域都可以在四个接收领域工作,以学习全球和本地特征及其关系。具体而言,我们首先设计了辛格形恢复网络(SFR-NET),并在辛格图域及其傅立叶空间中忠实地注入金属腐败的痕迹。然后,我们将SFR-NET与图像风格的完善网络(IFR-NET)搭配,该网络同时使用图像及其傅立叶频谱,以使用跨域上下文信息信息从SFR-NET输出重建了CT图像。在临床数据集上对四边形网络进行了训练,以最大程度地减少复合损失函数。四边形网络不需要精确的金属面具,这在临床实践中非常重要。我们的实验结果证明了四边形的优势在定量,视觉和统计学上是最先进的MAR方法。四边形代码可在https://github.com/longzilicart/quad-net上公开获得。

Metal implants and other high-density objects in patients introduce severe streaking artifacts in CT images, compromising image quality and diagnostic performance. Although various methods were developed for CT metal artifact reduction over the past decades, including the latest dual-domain deep networks, remaining metal artifacts are still clinically challenging in many cases. Here we extend the state-of-the-art dual-domain deep network approach into a quad-domain counterpart so that all the features in the sinogram, image, and their corresponding Fourier domains are synergized to eliminate metal artifacts optimally without compromising structural subtleties. Our proposed quad-domain network for MAR, referred to as Quad-Net, takes little additional computational cost since the Fourier transform is highly efficient, and works across the four receptive fields to learn both global and local features as well as their relations. Specifically, we first design a Sinogram-Fourier Restoration Network (SFR-Net) in the sinogram domain and its Fourier space to faithfully inpaint metal-corrupted traces. Then, we couple SFR-Net with an Image-Fourier Refinement Network (IFR-Net) which takes both an image and its Fourier spectrum to improve a CT image reconstructed from the SFR-Net output using cross-domain contextual information. Quad-Net is trained on clinical datasets to minimize a composite loss function. Quad-Net does not require precise metal masks, which is of great importance in clinical practice. Our experimental results demonstrate the superiority of Quad-Net over the state-of-the-art MAR methods quantitatively, visually, and statistically. The Quad-Net code is publicly available at https://github.com/longzilicart/Quad-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源