论文标题

基于张量的多视图光谱聚类通过共享潜在空间

Tensor-based Multi-view Spectral Clustering via Shared Latent Space

论文作者

Tao, Qinghua, Tonin, Francesco, Patrinos, Panagiotis, Suykens, Johan A. K.

论文摘要

多视图光谱聚类(MVSC)由于多种数据源而引起了越来越多的关注。但是,在样本外预测中禁止大多数现有作品,并忽略了模型的解释性和聚类结果的探索。在本文中,通过受限的内核机框架通过共享潜在空间提出了一种新的MVSC方法。通过偶联特征双重性的镜头,我们为MVSC施加了加权内核主成分分析问题,并开发了修改的加权共轭特征二重性以制定双重变量。在我们的方法中,双重变量扮演着隐藏特征的作用,所有视图都共享了构造一个常见的潜在空间,并通过从特定的空间中学习预测来耦合视图。这种潜在空间可促进分离的簇,并提供直接的数据探索,促进可视化和解释。我们的方法只需要一个单个特征分类,其维度独立于视图数量。为了提高高阶相关性,引入了基于张量的建模而不增加计算复杂性。我们的方法可以通过样本外扩展灵活地应用,从而极大地提高了具有固定尺寸内核方案的大规模数据的效率。数值实验验证了我们的方法在准确性,效率和可解释性方面有效,显示出明显的特征值衰减和不同的潜在变量分布。

Multi-view Spectral Clustering (MvSC) attracts increasing attention due to diverse data sources. However, most existing works are prohibited in out-of-sample predictions and overlook model interpretability and exploration of clustering results. In this paper, a new method for MvSC is proposed via a shared latent space from the Restricted Kernel Machine framework. Through the lens of conjugate feature duality, we cast the weighted kernel principal component analysis problem for MvSC and develop a modified weighted conjugate feature duality to formulate dual variables. In our method, the dual variables, playing the role of hidden features, are shared by all views to construct a common latent space, coupling the views by learning projections from view-specific spaces. Such single latent space promotes well-separated clusters and provides straightforward data exploration, facilitating visualization and interpretation. Our method requires only a single eigendecomposition, whose dimension is independent of the number of views. To boost higher-order correlations, tensor-based modelling is introduced without increasing computational complexity. Our method can be flexibly applied with out-of-sample extensions, enabling greatly improved efficiency for large-scale data with fixed-size kernel schemes. Numerical experiments verify that our method is effective regarding accuracy, efficiency, and interpretability, showing a sharp eigenvalue decay and distinct latent variable distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源