论文标题

带线性转换的量子多值决策图

Quantum Multiple-Valued Decision Diagrams with Linear Transformations

论文作者

Li, Yonghong, Miao, Hao

论文摘要

由于量子计算的快速发展,基于决策图的量子操作的紧凑表示已被收到越来越多的吸引力。由于可变订单对决策图的大小有重大影响,因此确定良好的可变顺序至关重要。在本文中,我们将线性转换整合为量子计算的有效且规范的形式:量子多价值决策图(QMDDS)并开发新的规范表示形式,即线性转换的QMDDS(LTQMDDS)。我们为LTQMDD设计了一种线性筛选算法,该算法搜索良好的线性转换以获得更紧凑的量子函数形式。实验结果表明,与原始筛分算法相比,线性筛分算法能够生成明显改进的决策图。此外,对于某些类型的电路,线性筛分算法具有良好的性能,而筛分算法不会降低QMDD的大小。

Due to the rapid development of quantum computing, the compact representation of quantum operations based on decision diagrams has been received more and more attraction. Since variable orders have a significant impact on the size of the decision diagram, identifying a good variable order is of paramount importance. In this paper, we integrate linear transformations into an efficient and canonical form of quantum computing: Quantum Multiple-Valued Decision Diagrams (QMDDs) and develop a novel canonical representation, namely linearly transformed QMDDs (LTQMDDs). We design a linear sifting algorithm for LTQMDDs that search a good linear transformation to obtain a more compact form of quantum function. Experimental results show that the linear sifting algorithm is able to generate decision diagrams that are significantly improved compared with the original sifting algorithm. Moreover, for certain types of circuits, linear sifting algorithm have good performance whereas sifting algorithm does not decrease the size of QMDDs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源