论文标题
通过DE类别化的Lie-Algebra中心
Lie-algebra centers via de-categorification
论文作者
论文摘要
令$ \ mathfrak {g} $为特征零的代数封闭字段$ \ bbbk $。 Define the universal grading group $\mathcal{C}(\mathfrak{g})$ as having one generator $g_ρ$ for each irreducible $\mathfrak{g}$-representation $ρ$, one relation $g_π = g_ρ^{-1}$ whenever $π$ is weakly contained in the dual representation $ρ^*$ (i.e. the kernel of $π$中的代数$ u(\ mathfrak {g})$包含$ρ^*$),一个关系$g_ρ=g_ρ= g_ {ρ'} g_ {ρ”} $,每当$ρ$ in $ ply in $ρ'\ otimesρ$ bectime $ plyen $ρ$ coge。 主要结果是,与不可约表示的中心特征相连,给出了同构,在$ \ mathcal {c}(\ Mathfrak {g})$与中心$ \ Mathfrak的中心$ \ Mathfrak {z}} $ \ le \ Mathfrak的中心的dual $ \ mathfrak {z}^*$之间有限维可溶解; (b)有限维的半圣事。当包裹的代数$ u(\ Mathfrak {g})$具有忠实的不可减至的表示时,组$ \ MATHCAL {C}(\ Mathfrak {G})$也是微不足道的(发生在各种Infinite-dimential-dementional ovelbras)的情况下(\ Mathfrak fivey,例如$ \ Mathfrak)(slfrak)(sl fiftty)(\ fiftty}) $ \ mathfrak {o}(\ infty)$和$ \ mathfrak {sp}(\ infty)$)。这些是Müger'sfor紧凑型组的结果的类似物,以及作者对本地紧凑型组的许多结果,并为这种中心重建现象的普遍性提供了进一步的证据。
Let $\mathfrak{g}$ be a Lie algebra over an algebraically closed field $\Bbbk$ of characteristic zero. Define the universal grading group $\mathcal{C}(\mathfrak{g})$ as having one generator $g_ρ$ for each irreducible $\mathfrak{g}$-representation $ρ$, one relation $g_π = g_ρ^{-1}$ whenever $π$ is weakly contained in the dual representation $ρ^*$ (i.e. the kernel of $π$ in the enveloping algebra $U(\mathfrak{g})$ contains that of $ρ^*$), and one relation $g_ρ = g_{ρ'}g_{ρ"}$ whenever $ρ$ is weakly contained in $ρ'\otimesρ"$. The main result is that attaching to an irreducible representation its central character gives an isomorphism between $\mathcal{C}(\mathfrak{g})$ and the dual $\mathfrak{z}^*$ of the center $\mathfrak{z}\le \mathfrak{g}$ when $\mathfrak{g}$ is (a) finite-dimensional solvable; (b) finite-dimensional semisimple. The group $\mathcal{C}(\mathfrak{g})$ is also trivial when the enveloping algebra $U(\mathfrak{g})$ has a faithful irreducible representation (which happens for instance for various infinite-dimensional algebras of interest, such as $\mathfrak{sl}(\infty)$, $\mathfrak{o}(\infty)$ and $\mathfrak{sp}(\infty)$). These are analogues of a result of Müger's for compact groups and a number of results by the author on locally compact groups, and provide further evidence for the pervasiveness of such center-reconstruction phenomena.