论文标题
估计城市网络上相互作用代理的高峰时段交通拥堵模式
Estimating Peak-Hour Traffic Congestion Patterns For Interacting Agents On Urban Networks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study the emergence of congestion patterns in urban networks by modeling vehicular interaction by means of a simple traffic rule and by using a set of measures inspired by the standard Betweenness Centrality (BC). We consider a topologically heterogeneous group of cities and simulate the network loading during the morning peak-hour by increasing the number of circulating vehicles. At departure, vehicles are aware of the network state and choose paths with optimal traversal time. Each added path modifies the vehicular density and travel times for the following vehicles. Starting from an empty network and adding traffic until transportation collapses, provides a framework to study network's transition to congestion and how connectivity is progressively disrupted as the fraction of impossible paths becomes abruptly dominant. We use standard BC to probe into the instantaneous out-of-equilibrium network state for a range of traffic levels and show how this measure may be improved to build a better proxy for cumulative road usage during peak-hours. We define a novel dynamical measure to estimate cumulative road usage and the associated total time spent over the edges by the population of drivers. We also study how congestion starts with dysfunctional edges scattered over the network, then organizes itself into relatively small, but disruptive clusters.