论文标题

REALFLOW:基于EM的现实光流数据集从视频生成

RealFlow: EM-based Realistic Optical Flow Dataset Generation from Videos

论文作者

Han, Yunhui, Luo, Kunming, Luo, Ao, Liu, Jiangyu, Fan, Haoqiang, Luo, Guiming, Liu, Shuaicheng

论文摘要

从视频中获取地面真相标签是充满挑战的,因为在像素流标签的手动注释非常昂贵且费力。此外,现有的方法试图使合成数据集上的训练有素的模型适应真实的视频,该视频不可避免地遭受了域差异并阻碍了现实世界应用程序的性能。为了解决这些问题,我们提出了Realflow,这是一个基于期望的最大化框架,可以直接从任何未标记的现实视频中创建大规模的光流数据集。具体而言,我们首先估计一对视频帧之间的光流,然后根据预测流从该对中合成新图像。因此,新图像对及其相应的流可以被视为新的训练集。此外,我们设计了一种逼真的图像对渲染(RIPR)模块,该模块采用软磁性碎片和双向孔填充技术来减轻图像合成的伪像。在E-Step中,RIPR呈现新图像以创建大量培训数据。在M-Step中,我们利用生成的训练数据来训练光流网络,该数据可用于估计下一个E-Step中的光流。在迭代学习步骤中,流网络的能力逐渐提高,流量的准确性以及合成数据集的质量也是如此。实验结果表明,REALFLOW的表现优于先前的数据集生成方法。此外,基于生成的数据集,我们的方法与受监督和无监督的光流方法相比,在两个标准基准测试方面达到了最先进的性能。我们的代码和数据集可从https://github.com/megvii-research/realflow获得

Obtaining the ground truth labels from a video is challenging since the manual annotation of pixel-wise flow labels is prohibitively expensive and laborious. Besides, existing approaches try to adapt the trained model on synthetic datasets to authentic videos, which inevitably suffers from domain discrepancy and hinders the performance for real-world applications. To solve these problems, we propose RealFlow, an Expectation-Maximization based framework that can create large-scale optical flow datasets directly from any unlabeled realistic videos. Specifically, we first estimate optical flow between a pair of video frames, and then synthesize a new image from this pair based on the predicted flow. Thus the new image pairs and their corresponding flows can be regarded as a new training set. Besides, we design a Realistic Image Pair Rendering (RIPR) module that adopts softmax splatting and bi-directional hole filling techniques to alleviate the artifacts of the image synthesis. In the E-step, RIPR renders new images to create a large quantity of training data. In the M-step, we utilize the generated training data to train an optical flow network, which can be used to estimate optical flows in the next E-step. During the iterative learning steps, the capability of the flow network is gradually improved, so is the accuracy of the flow, as well as the quality of the synthesized dataset. Experimental results show that RealFlow outperforms previous dataset generation methods by a considerably large margin. Moreover, based on the generated dataset, our approach achieves state-of-the-art performance on two standard benchmarks compared with both supervised and unsupervised optical flow methods. Our code and dataset are available at https://github.com/megvii-research/RealFlow

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源