论文标题

快速肺超声互联19与资源有效的深度提取的严重程度评分

Rapid Lung Ultrasound COVID-19 Severity Scoring with Resource-Efficient Deep Feature Extraction

论文作者

Raillard, Pierre, Cristoni, Lorenzo, Walden, Andrew, Lazzari, Roberto, Pulimood, Thomas, Grandjean, Louis, Wheeler-Kingshott, Claudia AM Gandini, Hu, Yipeng, Baum, Zachary MC

论文摘要

基于人工智能的肺超声成像的分析已被证明是整个Covid-19大流行中快速诊断决策支持的有效技术。但是,这种技术可能需要几天或几周的训练过程和超参数调整,以开发智能的深度学习图像分析模型。这项工作着重于利用“现成”预训练的模型,作为以最小的训练时间为疾病严重程度得分的深度提取器。我们建议在简单而紧凑的神经网络之前使用现有方法的预训练初始化,以减少对计算能力的依赖。在时间限制或资源约束的情况下,例如大流行的早期阶段,计算能力的降低至关重要。在由49位患者组成的数据集中,包括20,000多张图像,我们证明了现有方法作为特征提取器的使用会导致有效分类COVID-19与COVID相关的肺炎严重程度,同时只需几分钟的训练时间。与专家注释的地面真相相比,我们的方法可以在4级的严重程度评分量表上达到超过0.93的准确性,并提供可比的人均区域和全球分数。这些结果表明,在Covid-19患者的临床实践中以及其他呼吸系统疾病中,在临床实践中进行进度监测,患者分层和管理的快速部署和使用能力。

Artificial intelligence-based analysis of lung ultrasound imaging has been demonstrated as an effective technique for rapid diagnostic decision support throughout the COVID-19 pandemic. However, such techniques can require days- or weeks-long training processes and hyper-parameter tuning to develop intelligent deep learning image analysis models. This work focuses on leveraging 'off-the-shelf' pre-trained models as deep feature extractors for scoring disease severity with minimal training time. We propose using pre-trained initializations of existing methods ahead of simple and compact neural networks to reduce reliance on computational capacity. This reduction of computational capacity is of critical importance in time-limited or resource-constrained circumstances, such as the early stages of a pandemic. On a dataset of 49 patients, comprising over 20,000 images, we demonstrate that the use of existing methods as feature extractors results in the effective classification of COVID-19-related pneumonia severity while requiring only minutes of training time. Our methods can achieve an accuracy of over 0.93 on a 4-level severity score scale and provides comparable per-patient region and global scores compared to expert annotated ground truths. These results demonstrate the capability for rapid deployment and use of such minimally-adapted methods for progress monitoring, patient stratification and management in clinical practice for COVID-19 patients, and potentially in other respiratory diseases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源