论文标题

直接确定分子相关电子结构的最佳实空轨道

Direct determination of optimal real-space orbitals for correlated electronic structure of molecules

论文作者

Valeev, Edward F., Holmes, Robert J. Harrison. Adam A., Peterson, Charles C., Penchoff, Deborah A.

论文摘要

我们演示了如何通过最大程度地减少能量拉格朗日来确定最佳评估原子和分子的态度(相关)状态的能量的最佳轨道。轨道使用多分辨率的光谱元素基础在真实空间中表达,该元件基础是适应性的,以实现用户指定的目标精确度,同时避免了疾病的问题,这些问题会困扰AO基础集的扩展,传统上用于分子电子结构的相关模型。对于光原子,轨道求解器与变异电子结构模型[所选构型相互作用(CI)]结合使用,提供了与最先进的原子CI求解器相当精度的能量。原子和分子的计算电子能比使用同一等级的高斯AO碱基获得的对应物明显更准确,并且即使在线性依赖性问题排除AO碱基的使用时,也可以确定。在单个计算机节点上优化100多个完全相关的数值轨道是可行的,并且存在重大空间以进行额外改进。这些发现表明,真实空间轨道表示可能是分子和材料相关电子状态的高端模型的AO表示的首选替代方案。

We demonstrate how to determine numerically nearly exact orthonormal orbitals that are optimal for evaluation of the energy of arbitrary (correlated) states of atoms and molecules by minimization of the energy Lagrangian. Orbitals are expressed in real space using a multiresolution spectral element basis that is refined adaptively to achieve the user-specified target precision while avoiding the ill-conditioning issues that plague AO basis set expansions traditionally used for correlated models of molecular electronic structure. For light atoms, the orbital solver, in conjunction with a variational electronic structure model [selected Configuration Interaction(CI)] provides energies of comparable precision to a state-of-the-art atomic CI solver. The computed electronic energies of atoms and molecules are significantly more accurate than the counterparts obtained with the Gaussian AO bases of the same rank, and can be determined even when linear dependence issues preclude the use of the AO bases. It is feasible to optimize more than 100 fully-correlated numerical orbitals on a single computer node, and significant room exists for additional improvement. These findings suggest that the real-space orbital representations might be the preferred alternative to AO representations for high-end models of correlated electronic states of molecules and materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源