论文标题
Me-Gan:多视图ECG综合的学习全磁心电图表示,以心脏病为条件
ME-GAN: Learning Panoptic Electrocardio Representations for Multi-view ECG Synthesis Conditioned on Heart Diseases
论文作者
论文摘要
心电图(ECG)是一种广泛使用的心脏病的非侵入性诊断工具。许多研究设计了ECG分析模型(例如分类器)来协助诊断。作为一项上游任务,研究已经建立了生成模型来综合ECG数据,ECG数据有益于提供培训样本,隐私保护和减少注释。但是,以前的ECG生成方法通常既不合成多视图数据,也不涉及心脏病状况。在本文中,我们提出了一种新型的,用于多视图ECG合成的疾病感知的生成对抗网络,称为ME-GAN,该网络获得了以心脏病为条件的全磁心电图表示,并将其投射到多个标准视图上,以产生ECG信号。由于心脏病的ECG表现通常位于特定波形中,因此我们提出了一种新的“混合归一化”,以精确地注入合适的位置。此外,我们提出了一个视图歧视者,将无序的心电图视图恢复为预定的顺序,从而监督发电机以获得代表正确视图特征的ECG。此外,提出了一个新的指标RFID,以评估合成的ECG信号的质量。全面的实验验证了我们的ME-GAN在具有可信赖的病态表现的多视图ECG信号合成上表现良好。
Electrocardiogram (ECG) is a widely used non-invasive diagnostic tool for heart diseases. Many studies have devised ECG analysis models (e.g., classifiers) to assist diagnosis. As an upstream task, researches have built generative models to synthesize ECG data, which are beneficial to providing training samples, privacy protection, and annotation reduction. However, previous generative methods for ECG often neither synthesized multi-view data, nor dealt with heart disease conditions. In this paper, we propose a novel disease-aware generative adversarial network for multi-view ECG synthesis called ME-GAN, which attains panoptic electrocardio representations conditioned on heart diseases and projects the representations onto multiple standard views to yield ECG signals. Since ECG manifestations of heart diseases are often localized in specific waveforms, we propose a new "mixup normalization" to inject disease information precisely into suitable locations. In addition, we propose a view discriminator to revert disordered ECG views into a pre-determined order, supervising the generator to obtain ECG representing correct view characteristics. Besides, a new metric, rFID, is presented to assess the quality of the synthesized ECG signals. Comprehensive experiments verify that our ME-GAN performs well on multi-view ECG signal synthesis with trusty morbid manifestations.