论文标题
关于叠加原理和自旋眼镜中的非线性响应
On the superposition principle and non-linear response in spin glasses
论文作者
论文摘要
近三十年来,叠加的扩展原理一直是自旋玻璃动力学的试金石。 Uppsala集团已经证明了其在降低的温度下$ h $最高10 o的金属旋转玻璃的有效性,$ t_ \ mathrm {r} = t/t/t/t_ \ mathrm {g} = 0.95 = 0.95 $,如果$ t_ \ t_ \ mathrm {g} $是$ t_ \ mathrm {g} $。对于$ h> 10 $ oe,他们观察到与线性响应的背离,他们归因于非线性动力学的发展。本文的推力是通过关注自旋玻璃相关长度的时间开发$ξ(t,t,t_ \ mathrm {w}; h)$来为这种行为开发微观来源。在这里,$ t $是$ h $更改之后的时间,$ t_ \ mathrm {w} $是$ t> t> t> t> t_ \ mathrm {g} $到工作温度$ t $的时间到$ h $更改。我们将$ξ(t,t_ \ mathrm {w}; h)的增长连接到设置动力学的屏障高度$δ(t_ \ mathrm {w})$。 $ h $对$δ(t_ \ mathrm {w})$的幅度的影响负责影响与将$ h $关闭(TRM或TREM MAGNATIONT)或ON(ZFC)或ON(ZFC或Zero Field-Cool Magnitation of trm或Thermoremanent磁化)相关的两个动态协议。在本文中,我们显示了零视场冷却$ξ_ {\ text {zfc}}}}(t,t,t_ \ mathrm {w}; h)$与热势磁化$之一数值模拟,对应于与Uppsala组的发现相一致的违反扩展原理的侵犯。
The extended principle of superposition has been a touchstone of spin glass dynamics for almost thirty years. The Uppsala group has demonstrated its validity for the metallic spin glass, CuMn, for magnetic fields $H$ up to 10 Oe at the reduced temperature $T_\mathrm{r}=T/T_\mathrm{g} = 0.95$, where $T_\mathrm{g}$ is the spin glass condensation temperature. For $H > 10$ Oe, they observe a departure from linear response which they ascribe to the development of non-linear dynamics. The thrust of this paper is to develop a microscopic origin for this behavior by focusing on the time development of the spin glass correlation length, $ξ(t,t_\mathrm{w};H)$. Here, $t$ is the time after $H$ changes, and $t_\mathrm{w}$ is the time from the quench for $T>T_\mathrm{g}$ to the working temperature $T$ until $H$ changes. We connect the growth of $ξ(t,t_\mathrm{w};H)$ to the barrier heights $Δ(t_\mathrm{w})$ that set the dynamics. The effect of $H$ on the magnitude of $Δ(t_\mathrm{w})$ is responsible for affecting differently the two dynamical protocols associated with turning $H$ off (TRM, or thermoremanent magnetization) or on (ZFC, or zero field-cooled magnetization). In this paper, we display the difference between the zero-field cooled $ξ_{\text {ZFC}}(t,t_\mathrm{w};H)$ and the thermoremanent magnetization $ξ_{\text {TRM}}(t,t_\mathrm{w};H)$ correlation lengths as $H$ increases, both experimentally and through numerical simulations, corresponding to the violation of the extended principle of superposition in line with the finding of the Uppsala Group.