论文标题

分数Orlicz-Sobolev空间中功能的界限

Boundedness of functions in fractional Orlicz-Sobolev spaces

论文作者

Alberico, Angela, Cianchi, Andrea, Pick, Luboš, Slavíková, Lenka

论文摘要

展示了将分数orlicz-sobolev空间连续嵌入$ l^\ infty(\ mathbb r^n)$的必要条件。在相同的假设下,来自相关分数空间的任何函数都显示为连续。还提供了此结果的改进。它们提供了最佳的ORLICZ目标空间,以及所讨论的嵌入中最佳重排的目标空间。这些结果补充了在亚临界情况下已经可用的结果,其中将嵌入到$ l^\ infty(\ mathbb r^n)$失败中。它们还增加了标准分数Sobolev空间的经典嵌入定理。

A necessary and sufficient condition for fractional Orlicz-Sobolev spaces to be continuously embedded into $L^\infty(\mathbb R^n)$ is exhibited. Under the same assumption, any function from the relevant fractional-order spaces is shown to be continuous. Improvements of this result are also offered. They provide the optimal Orlicz target space, and the optimal rearrangement-invariant target space in the embedding in question. These results complement those already available in the subcritical case, where the embedding into $L^\infty(\mathbb R^n)$ fails. They also augment a classical embedding theorem for standard fractional Sobolev spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源