论文标题
估计处于风险的价值:LSTM与Garch
Estimating value at risk: LSTM vs. GARCH
论文作者
论文摘要
使用可能的异质动力学估算时间序列数据的价值风险是一项艰巨的任务。通常,我们面临着一个小的数据问题,结合了高度的非线性,这给经典和机器学习估计算法带来了困难。在本文中,我们提出了使用长期记忆(LSTM)神经网络的新型价值估计器,并将其性能与基准GARCH估计器进行比较。 我们的结果表明,即使在相对较短的时间序列中,LSTM也可以用于完善或监视风险估计过程,并以非参数方式正确识别潜在的风险动态。我们对模拟和市场数据的估计器进行了评估,重点是异方差,发现LSTM在模拟数据上表现出与GARCH估计器相似的性能,而在实际市场数据上,它对增加或降低波动性更为敏感,并且胜过所有现有的现有估计值,所有现有的价值估算值在异常率和平均量化速率方面具有差异。
Estimating value-at-risk on time series data with possibly heteroscedastic dynamics is a highly challenging task. Typically, we face a small data problem in combination with a high degree of non-linearity, causing difficulties for both classical and machine-learning estimation algorithms. In this paper, we propose a novel value-at-risk estimator using a long short-term memory (LSTM) neural network and compare its performance to benchmark GARCH estimators. Our results indicate that even for a relatively short time series, the LSTM could be used to refine or monitor risk estimation processes and correctly identify the underlying risk dynamics in a non-parametric fashion. We evaluate the estimator on both simulated and market data with a focus on heteroscedasticity, finding that LSTM exhibits a similar performance to GARCH estimators on simulated data, whereas on real market data it is more sensitive towards increasing or decreasing volatility and outperforms all existing estimators of value-at-risk in terms of exception rate and mean quantile score.