论文标题
用于图数据的灵活且可解释的空间协方差模型
A flexible and interpretable spatial covariance model for data on graphs
论文作者
论文摘要
通常构建了面积数据的空间模型,以便假定所有相邻区域的所有对具有几乎相同的空间自相关。实际上,数据可以表现出比在此假设中所代表的更为复杂的依赖性结构。在本文中,我们为图表上观察到的空间相关数据开发了一个新模型,该模型可以灵活地表示多种类型的空间依赖模式,同时保留原始图几何形状的方面。我们的方法意味着将图嵌入到欧几里得空间中,其中可以使用传统的协方差函数(例如来自Matérn家族的协方差函数)进行建模。我们使用与此类协方差函数兼容的一类图形指标对模型进行参数化,并以网络流的距离来表征距离,这是一种用于理解许多生态环境中接近度的属性。通过估计这些指标的基础参数,我们恢复了图节点之间的“固有距离”,这有助于解释估计的协方差,并使我们能够更好地理解观察到的过程和空间域之间的关系。我们将我们的模型与现有的空间依赖图数据的方法进行了比较,这主要是有条件的自回归模型及其变体,并说明了我们方法比传统方法的优势。我们将模型适合于北卡罗来纳州的几种物种的鸟类丰富数据,并展示了它如何提供对物种特异性空间分布与地理位置之间相互作用的见解。
Spatial models for areal data are often constructed such that all pairs of adjacent regions are assumed to have near-identical spatial autocorrelation. In practice, data can exhibit dependence structures more complicated than can be represented under this assumption. In this article we develop a new model for spatially correlated data observed on graphs, which can flexibly represented many types of spatial dependence patterns while retaining aspects of the original graph geometry. Our method implies an embedding of the graph into Euclidean space wherein covariance can be modeled using traditional covariance functions, such as those from the Matérn family. We parameterize our model using a class of graph metrics compatible with such covariance functions, and which characterize distance in terms of network flow, a property useful for understanding proximity in many ecological settings. By estimating the parameters underlying these metrics, we recover the "intrinsic distances" between graph nodes, which assist in the interpretation of the estimated covariance and allow us to better understand the relationship between the observed process and spatial domain. We compare our model to existing methods for spatially dependent graph data, primarily conditional autoregressive models and their variants, and illustrate advantages of our method over traditional approaches. We fit our model to bird abundance data for several species in North Carolina, and show how it provides insight into the interactions between species-specific spatial distributions and geography.