论文标题
非线性椭圆方程的常规解决方案,具有对流术语,在Orlicz空间中
Regular solutions for nonlinear elliptic equations, with convective terms, in Orlicz spaces
论文作者
论文摘要
我们为Dirichlet问题建立了一些存在和规律性的结果,因为一类涉及部分差分运算符的准椭圆方程,具体取决于溶液的梯度。我们的结果是在Orlicz Sobolev空间中的,在对流项下的一般生长条件下。子和超溶液方法是证明存在结果的关键工具。
We establish some existence and regularity results to the Dirichlet problem, for a class of quasilinear elliptic equations involving a partial differential operator, depending on the gradient of the solution. Our results are formulated in the Orlicz Sobolev spaces and under general growth conditions on the convection term. The sub and supersolutions method is a key tool in the proof of the existence results.