论文标题
NSNET:非降低抑制采样器,以进行有效的视频识别
NSNet: Non-saliency Suppression Sampler for Efficient Video Recognition
论文作者
论文摘要
在低计算成本的情况下,人工智能系统要获得准确的视频识别是一项挑战。基于自适应推理的有效视频识别方法通常会预览视频,并专注于降低计算成本的显着零件。大多数现有作品都集中在复杂的网络学习,并具有基于视频分类的目标。以所有框架为正样本,其中很少有人关注积极样本(显着框架)和负面样本(非偏好框架)之间的歧视。为了填补这一空白,在本文中,我们提出了一个新型的非高度抑制网络(NSNET),该网络有效地抑制了非偏好框架的响应。具体而言,在框架级别上,可以生成可以区分显着框架和非空位框架的有效伪标签,以指导框架显着性学习。在视频层面上,在双重视频级别的监督下都学会了一个时间关注模块,既是对突出表示和非偏好表示)。从两个两个级别的显着度量进行了合并,以利用多粒性互补信息。在四个众所周知的基准上进行的广泛实验验证了我们的NSNET不仅实现了最先进的准确性效率折衷,而且比最新的方法更快地提出了实际推断速度(2.4〜4.3倍)。我们的项目页面位于https://lawrencexia2008.github.io/projects/nsnet。
It is challenging for artificial intelligence systems to achieve accurate video recognition under the scenario of low computation costs. Adaptive inference based efficient video recognition methods typically preview videos and focus on salient parts to reduce computation costs. Most existing works focus on complex networks learning with video classification based objectives. Taking all frames as positive samples, few of them pay attention to the discrimination between positive samples (salient frames) and negative samples (non-salient frames) in supervisions. To fill this gap, in this paper, we propose a novel Non-saliency Suppression Network (NSNet), which effectively suppresses the responses of non-salient frames. Specifically, on the frame level, effective pseudo labels that can distinguish between salient and non-salient frames are generated to guide the frame saliency learning. On the video level, a temporal attention module is learned under dual video-level supervisions on both the salient and the non-salient representations. Saliency measurements from both two levels are combined for exploitation of multi-granularity complementary information. Extensive experiments conducted on four well-known benchmarks verify our NSNet not only achieves the state-of-the-art accuracy-efficiency trade-off but also present a significantly faster (2.4~4.3x) practical inference speed than state-of-the-art methods. Our project page is at https://lawrencexia2008.github.io/projects/nsnet .